• Title/Summary/Keyword: Throughput and interference

Search Result 419, Processing Time 0.022 seconds

Channel State-Aware Joint Dynamic Cell Coordination Scheme using Adaptive Modulation and Variable Reuse Factor in OFDMA (OFDMA 하향링크에서 적응적 변조와 여러 개의 재사용 지수를 동시에 사용하고 채널 상태를 고려한 동적 셀 코디네이션)

  • Byun, Dae-Wook;Ki, Young-Min;Kim, Dong-Ku
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.1A
    • /
    • pp.24-33
    • /
    • 2007
  • In this paper, two different dynamic cell coordination strategies for frequency flat and selective fading are proposed for efficient subcarrier allocation in the joint consideration of adaptive modulation and variable frequency reuse in the channel-aware OFDMA downlink multicellular environment. Compared to a conventional OFDMA system without cell coordination, where system throughput may become degraded due to the persistent interference from other cells, the proposed system dynamically allows RNC to apply different reuse factors on each subchannel and scheduling in consideration of channel and interference conditions of individual users so as to increase the system throughput and guarantee QoS of each user. In a frequency flat fading, the dynamic scheme with the proposed scheduling achieves on average three times larger throughput than the conventional dynamic scheme [8]. In a selective fading channel, the proposed schemes showed 2.6 times as large throughput as that of a single reuse factor of one for all subchannels.

Semi-distributed dynamic inter-cell interference coordination scheme for interference avoidance in heterogeneous networks

  • Padmaloshani, Palanisamy;Nirmala, Sivaraj
    • ETRI Journal
    • /
    • v.42 no.2
    • /
    • pp.175-185
    • /
    • 2020
  • Inter-cell interference (ICI) is a major problem in heterogeneous networks, such as two-tier femtocell (FC) networks, because it leads to poor cell-edge throughput and system capacity. Dynamic ICI coordination (ICIC) schemes, which do not require prior frequency planning, must be employed for interference avoidance in such networks. In contrast to existing dynamic ICIC schemes that focus on homogeneous network scenarios, we propose a novel semi-distributed dynamic ICIC scheme to mitigate interference in heterogeneous network scenarios. With the goal of maximizing the utility of individual users, two separate algorithms, namely the FC base station (FBS)-level algorithm and FC management system (FMS)-level algorithm, are employed to restrict resource usage by dominant interference-creating cells. The distributed functionality of the FBS-level algorithm and low computational complexity of the FMS-level algorithm are the main advantages of the proposed scheme. Simulation results demonstrate improvement in cell-edge performance with no impact on system capacity or user fairness, which confirms the effectiveness of the proposed scheme compared to static and semi-static ICIC schemes.

Fast Channel Allocation for Ultra-dense D2D-enabled Cellular Network with Interference Constraint in Underlaying Mode

  • Dun, Hui;Ye, Fang;Jiao, Shuhong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.6
    • /
    • pp.2240-2254
    • /
    • 2021
  • We investigate the channel allocation problem in an ultra-dense device-to-device (D2D) enabled cellular network in underlaying mode where multiple D2D users are forced to share the same channel. Two kinds of low complexity solutions, which just require partial channel state information (CSI) exchange, are devised to resolve the combinatorial optimization problem with the quality of service (QoS) guaranteeing. We begin by sorting the cellular users equipment (CUEs) links in sequence in a matric of interference tolerance for ensuring the SINR requirement. Moreover, the interference quota of CUEs is regarded as one kind of communication resource. Multiple D2D candidates compete for the interference quota to establish spectrum sharing links. Then base station calculates the occupation of interference quota by D2D users with partial CSI such as the interference channel gain of D2D users and the channel gain of D2D themselves, and carries out the channel allocation by setting different access priorities distribution. In this paper, we proposed two novel fast matching algorithms utilize partial information rather than global CSI exchanging, which reduce the computation complexity. Numerical results reveal that, our proposed algorithms achieve outstanding performance than the contrast algorithms including Hungarian algorithm in terms of throughput, fairness and access rate. Specifically, the performance of our proposed channel allocation algorithm is more superior in ultra-dense D2D scenarios.

On the Impact of Channel Sensing Methods to IEEE 802.15.4 Performances under IEEE 802.11b Interference

  • Shin, Soo-Young;Park, Hong-Seong
    • Journal of Communications and Networks
    • /
    • v.10 no.3
    • /
    • pp.301-307
    • /
    • 2008
  • In this paper, the impact of channel sensing methods to IEEE 802.15.4 under the interference of IEEE 802.11b are analyzed. Two different channel sensing methods, energy detection and carrier sense, are considered. An average transmission delay, a throughput, and a power drain rate are used as performance measures. Those performance measures of IEEE 802.15.4 under the interference of IEEE 802.11b are analyzed mathematically. The simulation results are shown to validate the analytic results.

System Level Performance Evaluation of TICN Based on Mobile WiMAX (Mobile WiMAX 기반 TICN의 시스템 레벨 성능평가)

  • Yun, Ju-Hee;Kim, Jaekwon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.8
    • /
    • pp.5233-5241
    • /
    • 2014
  • This study analyzed the system level performance of the Mobile WiMAX-based TICN, and the effects of the use of BS-OTM in terms of the throughput of individual users as well as the overall system, assuming that other stationary BSs are distributed randomly. When BS-OTM is used, the CINRs decrease due to the additional interference from the BS-OTM from the perspective of SSs that are served by the same BS as when OTM BS is not used. On the other hand, from the perspective of SSs that had low CINRs, the CINRs increase significantly due to the new service from BS-OTM. Considering both effects, the cell throughput can be increased using BS-OTM. The CINR distribution and throughput of the overall system, changing the carrier frequency, position and velocity of the BS-OTM were also evaluated.

Autonomous Transmission Power Adjustment Strategy for Femtocell Base Station

  • Alotaibi, Sultan
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.4
    • /
    • pp.367-373
    • /
    • 2022
  • Femtocells have recently been recognized for their potential to boost network capacity, improve end-user QoS and throughput, and do so at a cheap cost and with ease of implementation. The use of femtocells in indoor environments, such as residential buildings with neighboring homes, is becoming more popular. Femtocells are subject to interference from other femtocells, and the unwanted effects of interference are amplified when femtocells are deployed in close proximity to one another. As a consequence, the network's overall performance is degraded to a significant degree. One of the strategies that is thought to be effective in reducing the impact of interference is altering the transmission power of the femtocells. In this paper, a dynamic downlink transmission power of femtocells is suggested. In accordance with the observed cost function unit, each femtocell automatically changes its transmission power. If a femtocell causes too much interference for its neighbors, its transmission power level will be limited by that interference's rate. A simulation experiment is conducted to validate the effectiveness of the suggested system when compared with other schemes. When compared to previous schemes, which are addressed in this study, the numerical results show that the proposed strategy could provide more capacity while also ideally mitigating the influence of interference among co-channel deployed femtocells.

Dynamic Coverage Control to Improve Channel Utilization in IEEE 802.11 (IEEE 802.11에서 채널 이용율을 높이기 위한 동적 커버영역 제어)

  • 양덕용;이태진
    • Proceedings of the IEEK Conference
    • /
    • 2003.11c
    • /
    • pp.195-199
    • /
    • 2003
  • BEE 802.11 Wireless LAN protocol uses fixed transmission power. It does not consider a power control mechanism based on the distance between the transmitter and the receiver in order to improve overall channel utilization. In home environment, where stations generally lie around an AP, the AP is subject to use transmission power more than it needs. And wireless LAN stations may require different minimal desired received power. If there are many adjacent BSSs in densely populated WLAN area, they might cause RF interference to one another. In this paper we focus on the improvement of aggregate utilization by mitigating RF interference among BSSs. We show that RF interference by APs can be reduced by controlling transmission power using Link Margin information. The reduced interference will then lead to the increased aggregate throughput which is efficient resource utilization.

  • PDF

Link Adaptation and Selection Method for OFDM Based Wireless Relay Networks

  • Can, Basak;Yomo, Hiroyuki;Carvalho, Elisabeth De
    • Journal of Communications and Networks
    • /
    • v.9 no.2
    • /
    • pp.118-127
    • /
    • 2007
  • We propose a link adaptation and selection method for the links constituting an orthogonal frequency division multiplexing (OFDM) based wireless relay network. The proposed link adaptation and selection method selects the forwarding, modulation, and channel coding schemes providing the highest end-to-end throughput and decides whether to use the relay or not. The link adaptation and selection is done for each sub-channel based on instantaneous signal to interference plus noise ratio (SINR) conditions in the source-to-destination, source-to-relay and relay-to-destination links. The considered forwarding schemes are amplify and forward (AF) and simple adaptive decode and forward (DF). Efficient adaptive modulation and coding decision rules are provided for various relaying schemes. The proposed end-to-end link adaptation and selection method ensures that the end-to-end throughput is always larger than or equal to that of transmissions without relay and non-adaptive relayed transmissions. Our evaluations show that over the region where relaying improves the end-to-end throughput, the DF scheme provides significant throughput gain over the AF scheme provided that the error propagation is avoided via error detection techniques. We provide a frame structure to enable the proposed link adaptation and selection method for orthogonal frequency division multiple access (OFDMA)-time division duplex relay networks based on the IEEE 802.16e standard.

An Interference Reduction Scheme Using AP Aggregation and Transmit Power Control on OpenFlow-based WLAN (OpenFlow가 적용된 무선랜 환경에서 AP 집단화 및 전송 파워 조절에 기반한 간섭 완화 기법)

  • Do, Mi-Rim;Chung, Sang-Hwa;Ahn, Chang-Woo
    • Journal of KIISE
    • /
    • v.42 no.10
    • /
    • pp.1254-1267
    • /
    • 2015
  • Recently, excessive installations of APs have caused WLAN interference, and many techniques have been suggested to solve this problem. The AP aggregation technique serves to reduce active APs by moving station connections to a certain AP. Since this technique forcibly moves station connections, the transmission performance of some stations may deteriorate. The AP transmit power control technique may cause station disconnection or deterioration of transmission performance when power is reduced under a certain level. The combination of these two techniques can reduce interference through AP aggregation and narrow the range of interferences further through detailed power adjustment. However, simply combining these techniques may decrease the probability of power adjustment after aggregation and increase station disconnections upon power control. As a result, improvement in performance may be insignificant. Hence, this study suggests a scheme to combine the AP aggregation and the AP transmit power control techniques in OpenFlow-based WLAN to ameliorate the disadvantages of each technique and to reduce interferences efficiently by performing aggregation for the purpose of increasing the probability of adjusting transmission power. Simulations reveal that the average transmission delay of the suggested scheme is reduced by as much as 12.8% compared to the aggregation scheme and by as much as 18.1% compared to the power control scheme. The packet loss rate due to interference is reduced by as much as 24.9% compared to the aggregation scheme and by as much as 46.7% compared to the power control scheme. In addition, the aggregation scheme and the power control scheme decrease the throughput of several stations as a side effect, but our scheme increases the total data throughput without decreasing the throughput of each station.

An Optimal Power-Throughput Tradeoff Study for MIMO Fading Ad-Hoc Networks

  • Yousefi'zadeh, Homayoun;Jafarkhani, Hamid
    • Journal of Communications and Networks
    • /
    • v.12 no.4
    • /
    • pp.334-345
    • /
    • 2010
  • In this paper, we study optimal tradeoffs of achievable throughput versus consumed power in wireless ad-hoc networks formed by a collection of multiple antenna nodes. Relying on adaptive modulation and/or dynamic channel coding rate allocation techniques for multiple antenna systems, we examine the maximization of throughput under power constraints as well as the minimization of transmission power under throughput constraints. In our examination, we also consider the impacts of enforcing quality of service requirements expressed in the form of channel coding block loss constraints. In order to properly model temporally correlated loss observed in fading wireless channels, we propose the use of finite-state Markov chains. Details of fading statistics of signal-to-interference-noise ratio, an important indicator of transmission quality, are presented. Further, we objectively inspect complexity versus accuracy tradeoff of solving our proposed optimization problems at a global as oppose to a local topology level. Our numerical simulations profile and compare the performance of a variety of scenarios for a number of sample network topologies.