• Title/Summary/Keyword: Throughput Fairness

Search Result 256, Processing Time 0.023 seconds

Enhanced Throughput and QoS Fairness for Two-Hop IEEE 802.16j Relay Networks

  • Kim, Sang-Won;Sung, Won-Jin;Jang, Ju-Wook
    • Journal of Communications and Networks
    • /
    • v.13 no.1
    • /
    • pp.32-42
    • /
    • 2011
  • Frequency reuse among relay stations (RSs) in a down-link access zone is widely adopted for throughput enhancement in IEEE 802.16j relay networks. Since the areas covered by the RSs or the base station (BS) may overlap, some mobile stations (MSs) at the border between two neighboring transmitting stations (RS or BS) using an identical frequency band may suffer severe interference or outage. This co-channel interference within the cell degrades the quality of service (QoS) fairness among the MSs as well as the system throughput. Exclusive use of a frequency band division (orthogonal resource allocation) among RSs can solve this problem but would cause degradation of the system throughput. We observe a trade-off between system throughput and QoS fairness in the previously reported schemes based on frequency reuse. In this paper, we propose a new frequency reuse scheme that achieves high system throughput with a high fairness level in QoS, positioning our scheme far above the trade-off curve formed by previous schemes. We claim that our scheme is beneficial for applications in which a high QoS level is required even for the MSs at the border. Exploiting the features of a directional antenna in the BS, we create a new zone in the frame structure. In the new zone, the RSs can serve the subordinate MSs at the border and prone to interference. In a 3-RS topology, where the RSs are located at points $120^{\circ}$ apart from one another, the throughput and Jain fairness index are 10.64 Mbps and 0.62, respectively. On the other hand, the throughput for the previously reported overlapped and orthogonal allocation schemes is 8.22 Mbps (fairness: 0.48) and 3.99 Mbps (fairness: 0.80), respectively. For a 6-RS topology, our scheme achieves a throughput of 18.38 Mbps with a fairness of 0.68; however, previous schemes with frequency reuse factors of 1, 2, 3, and 6 achieve a throughput of 15.24 Mbps (fairness: 0.53), 12.42 Mbps (fairness: 0.71),8.84 Mbps (fairness: 0.88), and 4.57 Mbps (fairness: 0.88), respectively.

Reuse Partitioning for Throughput and Fairness Improvement in OFDMA Based Relay System (OFDMA기반 Relay시스템에서 Throughput과 Fairness성능 향상을 위한 Reuse Partitioning기법)

  • Shim, Min-Kyu;Choi, Ho-Young;Hong, Dae-Hyoung
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.9
    • /
    • pp.17-24
    • /
    • 2007
  • In this paper, we propose the sub-cell reuse partitioning among relays as an efficient resource reuse scheme in the relay-based OFDMA systems. If the frequency resource is reused among relays aggressively, we can increase the cell throughput. However, the interferences due to the frequency reuse may cause the fairness decrease due to the SINR degradation especially at the edge of RS sub-cells. In this paper, to make the cell throughput and fairness performance improved at the same time, we propose a sub-cell reuse partitioning scheme that divides a relay sub-cell into inner zone for aggressive reuse and outer zone for sparse reuse. The performance of the proposed scheme has been analyzed by computer simulation. We also applied a scheduling algorithm that can work together with the proposed sub-cell reuse partitioning scheme. Simulation results show that the proposed scheme can improve both the throughput and the fairness performances. In particular, when the scheduling is applied for the improvement of fairness, it is shown that the throughput performance can be enhanced more efficiently by the proposed scheme.

A Computationally Efficient Scheduling Algorithm Capable of Controlling Throughput-Fairness Tradeoff (계산이 효율적인 전송률-형평성 트레이드오프 제어 스케줄링 알고리즘)

  • Lee, Min;Oh, Seong-Keun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.2A
    • /
    • pp.121-127
    • /
    • 2010
  • In this paper, we propose a computationally efficient scheduling algorithm that can arbitrarily control the throughput-fairness tradeoff in a multiuser wireless communication environment. As a new scheduling criterion, we combine linearly two well-known scheduling criteria such as one of achieving the maximum sum throughput and the other of achieving the maximum fairness, so as to control the relative proportion of the throughput and the fairness according to a control factor. For linear combining two different criteria, their optimization directivenesses and the units should be unified first. To meet these requirements, we choose an instantaneous channel capacity as a scheduling criterion for maximizing the sum throughput and the average serving throughput for maximizing the fairness. Through a unified linear combining of two optimization objectives with the control factor, it can provide various throughput-fairness tradeoffs according to the control factors. For further simplification, we exploit a high signal-to-noise ratio (SNR) approximation of the instantaneous channel capacity. Through computer simulations, we evaluate the throughput and fairness performances of the proposed algorithm according to the control factors, assuming an independent Rayleigh fading multiuser channel. We also evaluate the proposed algorithm employing the high SNR approximation. From simulation results, we could see that the proposed algorithm can control arbitrarily the throughput-fairness performance between the performance of the scheduler aiming to the maximum sum throughput and that of the scheduler aiming to the maximum fairness, finally, we see that the high SNR approximation can give a satisfactory performance in this situation.

Optimal Bandwidth Assignment for Packet Rings

  • Hua, Cunqing;Yum, Tak-Shing Peter;Li, Cheng
    • Journal of Communications and Networks
    • /
    • v.9 no.4
    • /
    • pp.402-407
    • /
    • 2007
  • The network throughput is an important performance criteria for the packet ring networks. Since maximizing the network throughput can lead to severe bias in bandwidth allocation among all flows, fairness should be imposed to prevent bandwidth starvation. The challenge here, therefore, is the joint optimization of the network throughput and fairness. In this paper, we present the optimal bandwidth assignment scheme to decompose this optimization problem into two tasks, one for finding fair bandwidth assignment and the other for finding the optimal routing. The network throughput is maximized under the fairness constraints when these tasks are performed iteratively.

Throughput-based fair bandwidth allocation in OBS networks

  • Le, Van Hoa;Vo, Viet Minh Nhat;Le, Manh Thanh
    • ETRI Journal
    • /
    • v.40 no.5
    • /
    • pp.624-633
    • /
    • 2018
  • Fair bandwidth allocation (FBA) has been studied in optical burst switching (OBS) networks, with the main idea being to map the max-min fairness in traditional IP networks to the fair-loss probability in OBS networks. This approach has proven to be fair in terms of the bandwidth allocation for differential connections, but the use of the ErlangB formula to calculate the theoretical loss probability has made this approach applicable only to Poisson flows. Furthermore, it is necessary to have a reasonable fairness measure to evaluate FBA models. This article proposes an approach involving throughput-based-FBA, called TFBA, and recommends a new fairness measure that is based on the ratio of the actual throughput to the allocated bandwidth. An analytical model for the performance of the output link with TFBA is also proposed.

A Multi-Rate Aware Distributed Packet Scheduling in Ad-hoc Networks (에드혹 네트워크에서 다중 데이터률을 고려하는 분산 패킷 스케쥴링)

  • Roh Kwen-Mun;Chen Yong-Qian;Yoo Sang-Jo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.7B
    • /
    • pp.642-651
    • /
    • 2006
  • In ad-hoc network, the most of existing packet scheduling schemes provides throughput-based fairness. To provide throughput-based fairness, it basically supposes that the channel capacity is fixed. But, the supposing that the channel capacity is fixed is not appropriate because IEEE 802.11b and 802.11g which are normally used for organizing ad-hoc network can provide various data rate according to channel conditions. So, we define time-based fairness for each flow to consider multi-rate and suggest the MRADPS reaching the defined time-based fairness. Simulation result shows that MRADPS improves the total network throughput in ad-hoc network with providing time-based fairness to each flow.

Sum-Rate Capacity with Fairness in Correlated MIMO Broadcast Channels

  • Lee, Seung-Hwan;Kim, Jin-Up
    • Journal of electromagnetic engineering and science
    • /
    • v.9 no.3
    • /
    • pp.124-129
    • /
    • 2009
  • Although the maximum sum-rate capacity of multiple-input multiple output(MIMO) broadcast channels(BCs) can be achieved by dirty-paper coding(DPC), the results were obtained without fairness considerations in uncorrelated MIMO channels. In this paper, we propose new multiuser scheduling algorithms, which find a best user set for approaching the maximum sum-rate capacity while maintaining fairness among users. We analyze the performance of the proposed algorithms using zero-forcing dirty paper coding(ZF-DPC) in the correlated MIMO BCs for throughput and delay fairness, respectively. Numerical results demonstrate that a large time window can reduce the average throughput difference between users, but it increases head-of-line(HOL) delay jitters in the case of delay fairness.

Short-term Fairness Analysis of Connection-based Slotted-Aloha

  • Yoora Kim
    • International journal of advanced smart convergence
    • /
    • v.12 no.4
    • /
    • pp.55-62
    • /
    • 2023
  • Slotted-Aloha (S-Aloha) has been widely employed in random access networks owing to its simple implementation in a distributed manner. To enhance the throughput performance of the S-Aloha, connection-based slotted-Aloha (CS-Aloha) has been proposed in recent years. The fundamental principle of the CS-Aloha is to establish a connection with a short-sized request packet before transmitting data packets. Subsequently, the connected node transmits long-sized data packets in a batch of size M. This approach efficiently reduces collisions, resulting in improved throughput compared to the S-Aloha, particularly for a large M. In this paper, we address the short-term fairness of the CS-Aloha, as quantified by Jain's fairness index. Specifically, we evaluate how equitably the CS-Aloha allocatestime slots to all nodes in the network within a finite time interval. Through simulation studies, we identify the impact of system parameters on the short-term fairness of the CS-Aloha and propose an optimal transmission probability to support short-term fairness.

A Buffer Management Scheme for Throughput and Fairness Improvement in ATM Networks (ATM 망에서 수율 및 공평성 향상을 위한 효율적 버퍼관리 기법)

  • 김남희
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.5
    • /
    • pp.842-848
    • /
    • 2003
  • The Guaranteed Frame Rate(GFR) service has been designed to accomodate non-real-time applications, such as TCP/IP based traffic in ATM networks. One of the important factors is buffer management for guaranteeing QoS in GFR service. In this paper, we propose a buffer management scheme which can improve the fairness and the throughput through the traffic control in GFR service. For the evaluation of the proposed scheme, we compare proposed scheme with the existing scheme in the fairness and the throughput. Simulation results show that proposed scheme can improve the fairness and throughput than the existing scheme.

  • PDF

Relay Assignment in Cooperative Communication Networks: Distributed Approaches Based on Matching Theory

  • Xu, Yitao;Liu, Dianxiong;Ding, Cheng;Xu, Yuhua;Zhang, Zongsheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.11
    • /
    • pp.5455-5475
    • /
    • 2016
  • In this article, we model the distributed relay assignment network as a many-to-one matching market with peer effects. We discuss two scenarios for throughput optimization of relay networks: the scenario of aggregate throughput optimization and the scenario of fairness performance optimization. For the first scenario, we propose a Mutual Benefit-based Deferred Acceptance (MBDA) algorithm to increase the aggregate network throughput. For the second scenario, instead of using the alternative matching scheme, a non-substitution matching algorithm (NSA) is designed to solve the fairness problem. The NSA improves the fairness performance. We prove that both two algorithms converge to a globally stable matching, and discuss the practical implementation. Simulation results show that the performance of MBDA algorithm outperforms existing schemes and is almost the same with the optimal solution in terms of aggregate throughput. Meanwhile, the proposed NSA improves fairness as the scale of the relay network expands.