• Title/Summary/Keyword: Throughput Data

Search Result 1,382, Processing Time 0.024 seconds

A Performance Improvement Method with Considering of Congestion Prediction and Packet Loss on UDT Environment (UDT 환경에서 혼잡상황 예측 및 패킷손실을 고려한 성능향상 기법)

  • Park, Jong-Seon;Lee, Seung-Ah;Kim, Seung-Hae;Cho, Gi-Hwan
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.2
    • /
    • pp.69-78
    • /
    • 2011
  • Recently, the bandwidth available to an end user has been dramatically increasing with the advancing of network technologies. This high-speed network naturally requires faster and/or stable data transmission techniques. The UDT(UDP based Data Transfer protocol) is a UDP based transport protocol, and shows more efficient throughput than TCP in the long RTT environment, with benefit of rate control for a SYN time. With a NAK event, however, it is difficult to expect an optimum performance due to the increase of fixed sendInterval and the flow control based on the previous RTT. This paper proposes a rate control method on following a NAK, by adjusting the sendInterval according to some degree of RTT period which calculated from a set of experimental results. In addition, it suggests an improved flow control method based on the TCP vegas, in order to predict the network congestion afterward. An experimental results show that the revised flow control method improves UDT's throughput about 20Mbps. With combining the rate control and flow control proposed, the UDT throughput can be improved up to 26Mbps in average.

Joint Optimization of Mobile Charging and Data Gathering for Wireless Rechargeable Sensor Networks

  • Tian, Xianzhong;He, Jiacun;Chen, Yuzhe;Li, Yanjun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.7
    • /
    • pp.3412-3432
    • /
    • 2019
  • Recent advances in radio frequency (RF) power transfer provide a promising technology to power sensor nodes. Adoption of mobile chargers to replenish the nodes' energy has recently attracted a lot of attention and the mobility assisted energy replenishment provides predictable and sustained power service. In this paper, we study the joint optimization of mobile charging and data gathering in sensor networks. A wireless multi-functional vehicle (WMV) is employed and periodically moves along specified trajectories, charge the sensors and gather the sensed data via one-hop communication. The objective of this paper is to maximize the uplink throughput by optimally allocating the time for the downlink wireless energy transfer by the WMV and the uplink transmissions of different sensors. We consider two scenarios where the WMV moves in a straight line and around a circle. By time discretization, the optimization problem is formulated as a 0-1 programming problem. We obtain the upper and lower bounds of the problem by converting the original 0-1 programming problem into a linear programming problem and then obtain the optimal solution by using branch and bound algorithm. We further prove that the network throughput is independent of the WMV's velocity under certain conditions. Performance of our proposed algorithm is evaluated through extensive simulations. The results validate the correctness of our proposed theorems and demonstrate that our algorithm outperforms two baseline algorithms in achieved throughput under different settings.

Threshold-dependent Occupancy Control Schemes for 3GPP's ARQ (3GPP의 ARQ를 위한 threshold에 의존하는 점유량 조절 방식)

  • Shin, Woo-Cheol;Park, Jin-Kyung;Ha, Jun;Choi, Cheon-Won
    • Journal of IKEEE
    • /
    • v.9 no.2 s.17
    • /
    • pp.123-135
    • /
    • 2005
  • 3GPP RLC protocol specification adopted a window-controlled selective-repeat ARQ scheme for provisioning reliable data transmission. Inevitably, the re-ordering issue arises in the 3GPP's ARQ since it belongs to the selective-repeat ARQ clan. A long re-ordering time results in the degradation of throughput and delay performance, and may invoke the overflow of the re-ordering buffer. Also, the re-ordering time must be regulated to meet the requirements of some services which are both loss-sensitive and delay-sensitive. In the 3GPP's ARQ, we may deflate the occupancy of the re-ordering buffer by reducing the window size and/or length of the status report period. Such a decrease, however, deteriorates the throughput and delay performance and encroaches the resource of the reverse channel. Aiming at reducing the occupancy at the re-ordering buffer while suppressing the degradation of throughput and delay performance, we propose threshold-dependent occupancy control schemes, identified as post-threshold and pre-threshold schemes, as supplements to the 3GPP's ARQ. For judging the effectiveness of the proposed schemes, we investigate peak occupancy, maximum throughput and average delay in the practical environment involving fading channels. From the simulation results, we observe that the proposed schemes invoke the performance trade-off between occupancy and throughput in general. Also, we reveal that the post-threshold scheme is able to improve the throughput and delay performance of the ordinary 3GPP's ARQ without inflating the occupancy of the re-ordering buffer.

  • PDF

A Primer for Disease Gene Prioritization Using Next-Generation Sequencing Data

  • Wang, Shuoguo;Xing, Jinchuan
    • Genomics & Informatics
    • /
    • v.11 no.4
    • /
    • pp.191-199
    • /
    • 2013
  • High-throughput next-generation sequencing (NGS) technology produces a tremendous amount of raw sequence data. The challenges for researchers are to process the raw data, to map the sequences to genome, to discover variants that are different from the reference genome, and to prioritize/rank the variants for the question of interest. The recent development of many computational algorithms and programs has vastly improved the ability to translate sequence data into valuable information for disease gene identification. However, the NGS data analysis is complex and could be overwhelming for researchers who are not familiar with the process. Here, we outline the analysis pipeline and describe some of the most commonly used principles and tools for analyzing NGS data for disease gene identification.

Rounds Reduction and Blocks Controlling to Enhance the Performance of Standard Method of Data Cryptography

  • Abu-Faraj, Mua'ad M.;Alqadi, Ziad A.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.12spc
    • /
    • pp.648-656
    • /
    • 2021
  • Color digital images are used in many multimedia applications and in many vital applications. Some of these applications require excellent protection for these images because they are confidential or may contain confidential data. In this paper, a new method of data cryptography is introduced, tested, and implemented. It will be shown how this method will increase the security level and the throughput of the data cryptography process. The proposed method will use a secret image_key to generate necessary private keys for each byte of the data block. The proposed method will be compared with other standard methods of data cryptography to show how it will meet the requirements of excellent cryptography, by achieving the objectives: Confidentiality, Integrity, Non-repudiation, and Authentication.

Improving the Efficiency and Scalability of Standard Methods for Data Cryptography

  • Abu-Faraj, Mua'ad M.;Alqadi, Ziad A.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.12spc
    • /
    • pp.451-458
    • /
    • 2021
  • Providing a secure and effective way to protect confidential and private data is an urgent process, and accordingly, we will present in this research paper a new method, which is called multiple rounds variable block method (MRVB) which depends on the use of a colored image that is kept secret to generate needed work and round keys. This method can be used to encrypt-decrypt data using various lengths private key and data blocks with various sizes. The number of rounds also will be variable starting from one round. MRVB will be implemented and compared with the encryption-decryption standards DES and AES to show the improvements provided by the proposed method in increasing the security level and in increasing the throughput of the process of data cryptography. The generated private key contents will depend on the used image_key and on the selected number of rounds and the selected number of bytes in each block of data.

HSDPA Sector Throughput Analysis With Modified Link Budget (Link budget을 이용한 HSDPA 시스템의 sector throughput 분식)

  • Yi Yo-Serb;Kim Sang-Bum;Hong Dae-Hyung;Jang Byung-Lyerl;Moon Soon-Joo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.5A
    • /
    • pp.469-474
    • /
    • 2006
  • In this paper, we develop a method that derive the average sector throughput of HSDPA system. This proposed method reflects the effects of AMC, scheduling and multi-code transmission, and is performed by simple calculation procedures such as link budget analysis. Link budget table is used to estimate a cell coverage in general. We modify the link budget table in order to calculate C/I of the user according to the location of the user in CDMA packet system employing AMC. Furthermore, we utilize the proposed method to analyze the effects of scheduling and multi-code transmission.

Throughput-efficient Online Relay Selection for Dual-hop Cooperative Networks

  • Lin, Yuan;Li, Bowen;Yin, Hao;He, Yuanzhi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.6
    • /
    • pp.2095-2110
    • /
    • 2015
  • This paper presents a design for a throughput-efficient online relay selection scheme for dual-hop multi-relay cooperative networks. Problems arise with these networks due to unpredictability of the relaying link quality and high time-consumption to probe the dual-hop link. In this paper, we firstly propose a novel probing and relaying protocol, which greatly reduces the overhead of the dual-hop link estimation by leveraging the wireless broadcasting nature of the network. We then formulate an opportunistic relay selection process for the online decision-making, which uses a tradeoff between obtaining more link information to establish better cooperative relaying and minimizing the time cost for dual-hop link estimation to achieve higher throughput. Dynamic programming is used to construct the throughput-optimal control policy for a typically heterogeneous Rayleigh fading environment, and determines which relay to probe and when to transmit the data. Additionally, we extend the main results to mixed Rayleigh/Rician link scenarios, i.e., where one side of the relaying link experiences Rayleigh fading while the other has Rician distribution. Numerical results validate the effectiveness and superiority of our proposed relaying scheme, e.g., it achieves at least 107% throughput gain compared with the state of the art solution.

Best-Effort Interference Alignment for K Users Quasi-Static MIMO Interference Channels

  • Jiang, Lijing;Song, Rongfang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.6
    • /
    • pp.2859-2872
    • /
    • 2019
  • Interference alignment (IA) has been a powerful approach to achieve the maximum degree of freedom (DoF) for K users multiple-input-multiple-output (MIMO) interference channels. However, due to the feasibility constraint, aligning all the interference signals at each receiver is impractical for large K without symbol extension. In this paper, we propose two best-effort interference alignment (BEIA) schemes that the network selects the maximum number of interfering transmitters to align their signals given the feasibility conditions when each transmitter-receiver pair has a constant number of data streams. Besides, in case of not all interfering signals aligned at each receiver, an upper bound of the average throughput is derived. Simulation results show that the proposed schemes have superiority over the traditional methods, such as time division multiple access (TDMA) and cluster IA(CIA), in low and moderate signal-to-noise ratio (SNR) region in terms of average user throughput. In addition, the proposed max-min relative interference distance alignment scheme outperforms the proposed scheme of equal interfering transmitters number alignment in terms of both average user throughput and minimum user throughput.

Effect Analysis of a Authentication Algorithm in IPsec VPN Satellite Communication (IPsec VPN 위성통신에서 인증알고리즘이 미치는 영향 분석)

  • Jeong, Won Ho;Hwang, Lan-Mi;Yeo, Bong-Gu;Kim, Ki-Hong;Park, Sang-Hyun;Yang, Sang-Woon;Lim, Jeong-Seok;Kim, Kyung-Seok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.5
    • /
    • pp.147-154
    • /
    • 2015
  • Satellite broadcasting networks, like if you have if you have just received information that everyone must bring the required security attributes this earth should be done as encryption. In this paper, a satellite communication network AH additional security header in transport mode IPsec VPN by applying the SHA-256 and MD-5 authentication algorithm to authenticate the data portion Error rate and analyze the BER and Throughput. First, to generate a normal IP packet added to IPsec transport mode security header AH were constructed internal authentication data by applying the SHA-256 and MD-5 algorithm. Channel coder was applied to the Rate Compatible Punctured Turbo Codes, packet retransmission scheme Hybrid-ARQ Type-II and Type-III were used. Modulation method was applied to the BPSK, the wireless channel Markov channel (Rician 80%, Rayleigh 20% and Rician 90%, Rayleigh 10%) as an authentication algorithm according to the satellite channel state analyzed how they affect the error rate and Throughput.