• Title/Summary/Keyword: Throughput Accounting

Search Result 17, Processing Time 0.023 seconds

Analysis of excreta bacterial community after forced molting in aged laying hens

  • Han, Gi Ppeum;Lee, Kyu-Chan;Kang, Hwan Ku;Oh, Han Na;Sul, Woo Jun;Kil, Dong Yong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.11
    • /
    • pp.1715-1724
    • /
    • 2019
  • Objective: As laying hens become aged, laying performance and egg quality are generally impaired. One of the practical methods to rejuvenate production and egg quality of aged laying hens with decreasing productivity is a forced molting. However, the changes in intestinal microbiota after forced molting of aged hens are not clearly known. The aim of the present study was to analyze the changes in excreta bacterial communities after forced molting of aged laying hens. Methods: A total of one hundred 66-wk-old Hy-Line Brown laying hens were induced to molt by a 2-d water removal and an 11-d fasting until egg production completely ceased. The excreta samples of 16 hens with similar body weight were collected before and immediately after molting. Excreta bacterial communities were analyzed by high-throughput sequencing of bacterial 16S rRNA genes. Results: Bacteroidetes, Firmicutes, and Proteobacteria were the three major bacterial phyla in pre-molting and immediate post-molting hens, accounting for more than 98.0%. Lactobacillus genus had relatively high abundance in both group, but decreased by molting (62.3% in premolting and 24.9% in post-molting hens). Moreover, pathogenic bacteria such as Enterococcus cecorum and Escherichia coli were more abundant in immediate post-molting hens than in pre-molting hens. Forced molting influenced the alpha diversity, with higher Chao1 (p = 0.012), phylogenetic diversity whole tree (p = 0.014), observed operational taxonomic unit indices (p = 0.006), and Simpson indices (p<0.001), which indicated that forced molting increased excreta bacterial richness of aged laying hens. Conclusion: This study improves the current knowledge of bacterial community alterations in the excreta by forced molting in aged laying hens, which can provide increasing opportunity to develop novel dietary and management skills for improving the gastrointestinal health of aged laying hens after molting.

Characterization of odor-associated fungal community in automobile HVAC systems using a high-throughput DNA sequencing method (고속 염기서열 분석법을 이용한 자동차 공조 시스템(HAVC systems)의 악취 연관 곰팡이 군집 특성)

  • Lee, Yun-Yeong;Choi, Hyungjoo;Yun, Jeonghee;Ryu, Hee Wook;Cho, Jong Rae;Seong, Kwangmo;Cho, Kyung-Suk
    • Journal of odor and indoor environment
    • /
    • v.16 no.1
    • /
    • pp.54-63
    • /
    • 2017
  • The Automobile HVAC system is a habitat for odor-associated fungal communities. We investigated the odor-associated fungal community in an automobile HVAC system using a high-throughput DNA sequencing method. The fungal community structure was evaluated via metagenome analysis. At the phylum level, Ascomycota and Basidiomycota were detected, accounting for 43.41% and 56.49% of the fungal community in the HVAC system, respectively. Columnosphaeria (8.31%), Didymella (5.60%), Davidiella (5.50%), Microxyphium (4.24%), unclassified Pleosporales (2.90%), and Cladosporium (2.79%) were abundant at phylum of Ascomycota and Christiansenia (36.72%), Rhodotorula (10.48%), and Sporidiobolus (2.34%) were abundant at phylum of Basidiomycota. A total of 22 genera of fungi were isolated and identified from the evaporators of the HVAC systems which support fungal growth and biofilm formation. Among them, Cladosporium, Penicillium, Aspergillus, and Alternaria are the most representative odor-associated fungi in HVAC systems. They were reported to form biofilm on the surface of HVAC systems with other bacteria by hypha. In addition, they produce various mVOCs such as 3-methyl-1-butanol, acetic acid, butanoic acid, and methyl isobutyl ketone. Our findings may be useful for extending the understanding of odor-associated fungal communities in automobile HVAC systems.

An Analytical Model for LR-WPAN Performance in the Presence of Hidden Nodes (은닉노드를 고려한 LR-WPAN 성능의 분석적 모델)

  • Lee, Kang-Woo;Shin, Youn-Soon;Hyun, Gyu-Wan;Ahn, Jong-Suk;Kim, Hie-Cheol
    • The KIPS Transactions:PartC
    • /
    • v.16C no.1
    • /
    • pp.133-142
    • /
    • 2009
  • This paper proposes an analytical performance model of IEEE 802.15.4 in the presence of hidden nodes. Conventional 802.15.4 mathematical models assume ideal situations where every node can detect the transmission signal of every other nodes different from the realistic environments. Since nodes can be randomly located in real environments so that some nodes' presence is hidden from other ones, this assumption leads to wrong performance evaluation of 802.15.4. For solving this problem, we develop an extended performance model which combines the traditional 802.15.4 performance model with one for accounting the presence of hidden nodes. The extended model predicts the rapid performance degradation of 802.15.4 due to the small number of hidden nodes. The performance, for example, degrades by 62% at maximum when 5% of the total nodes are hidden. These predictions are confirmed to be equal to those of ns-2 simulations by less than 6% difference.

Comparative Microbiome Analysis of Three Species of Laboratory-Reared Periplaneta Cockroaches

  • Lee, Seogwon;Kim, Ju Yeong;Yi, Myung-hee;Lee, In-Yong;Lee, Won-Ja;Moon, Hye Su;Yong, Dongeun;Yong, Tai-Soon
    • Parasites, Hosts and Diseases
    • /
    • v.58 no.5
    • /
    • pp.537-542
    • /
    • 2020
  • Cockroaches inhabit various habitats, which will influence their microbiome. Although the microbiome can be influenced by the diet and environmental factors, it can also differ between species. Therefore, we conducted 16S rDNA-targeted high-throughput sequencing to evaluate the overall bacterial composition of the microbiomes of 3 cockroach species, Periplaneta americana, P. japonica, and P. fuliginosa, raised in laboratory for several generations under the same conditions. The experiments were conducted using male adult cockroaches. The number of operational taxonomic units (OTUs) was not significantly different among the 3 species. With regard to the Shannon and Pielou indexes, higher microbiome values were noted in P. americana than in P. japonica and P. fuliginosa. Microbiome composition was also evaluated, with endosymbionts accounting for over half of all OTUs in P. japonica and P. fuliginosa. Beta diversity analysis further showed that P. japonica and P. fuliginosa had similar microbiome composition, which differed from that of P. americana. However, we also identified that P. japonica and P. fuliginosa host distinct OTUs. Thus, although microbiome compositions may vary based on multiple conditions, it is possible to identify distinct microbiome compositions among different Periplaneta cockroach species, even when the individuals are reared under the same conditions.

A Study on Assessment for Competitiveness of Port Hinterland (항만 배후부지 경쟁력 평가에 관한 연구)

  • Kim, Yul-Seong;Kim, Sang-Youl
    • Journal of Korea Port Economic Association
    • /
    • v.27 no.4
    • /
    • pp.73-90
    • /
    • 2011
  • Global companies regard the conditions of a location as one of the most crucial factors to assess the competitiveness of ports and the port hinterland, as well as emphasize creation of throughput and the importance of value added logistics in the hinterland under diffusing Supply Chain Management(SCM). This study deals with the evaluation of competitiveness in 7 hinterlands and the establishment of assessment model in hinterland. This study analyzes the importance of factors for the port hinterland competitiveness using AHP method. As a result, logistics factor, accounting for 62.3%, is shown as the relative more important factor, followed by hinterland's economy factors(27.3%) and city/policy factor(10.4%). The result implicates that measures to activate logistics factors with relatively high importance are essentially needed in order to improve the competitiveness of the hinterland of Busan New Port. Especially, it is needed to establish service routes of the port and air networks and to expand infrastructure for support. This study also assesses the competitiveness of hinterlands for the seven domestic and foreign ports based on importance of assessment factors for the hinterland competitiveness using AHP analysis. Busan(3.903) is ranked fourth behind Singapore(4.570), Hong Kong(4.357) and Shanghai(4.042) in assessment.

Effect of feeding raw potato starch on the composition dynamics of the piglet intestinal microbiome

  • Yi, Seung-Won;Lee, Han Gyu;So, Kyoung-Min;Kim, Eunju;Jung, Young-Hun;Kim, Minji;Jeong, Jin Young;Kim, Ki Hyun;Oem, Jae-Ku;Hur, Tai-Young;Oh, Sang-Ik
    • Animal Bioscience
    • /
    • v.35 no.11
    • /
    • pp.1698-1710
    • /
    • 2022
  • Objective: Raw potato starch (RPS) is resistant to digestion, escapes absorption, and is metabolized by intestinal microflora in the large intestine and acts as their energy source. In this study, we compared the effect of different concentrations of RPS on the intestinal bacterial community of weaned piglets. Methods: Male weaned piglets (25-days-old, 7.03±0.49 kg) were either fed a corn/soybean-based control diet (CON, n = 6) or two treatment diets supplemented with 5% RPS (RPS5, n = 4) or 10% RPS (RPS10, n = 4) for 20 days and their fecal samples were collected. The day 0 and 20 samples were analyzed using a 16S rRNA gene sequencing technology, followed by total genomic DNA extraction, library construction, and high-throughput sequencing. After statistical analysis, five phyla and 45 genera accounting for over 0.5% of the reads in any of the three groups were further analyzed. Furthermore, short-chain fatty acids (SCFAs) in the day 20 fecal samples were analyzed using gas chromatography. Results: Significant changes were not observed in the bacterial composition at the phylum level even after 20 d post feeding (dpf); however, the abundance of Intestinimonas and Barnesiella decreased in both RPS treatment groups compared to the CON group. Consumption of 5% RPS increased the abundance of Roseburia (p<0.05) and decreased the abundance of Clostridium (p<0.01) and Mediterraneibacter (p< 0.05). In contrast, consumption of 10% RPS increased the abundance of Olsenella (p<0.05) and decreased the abundance of Campylobacter (p<0.05), Kineothrix (p<0.05), Paraprevotella (p<0.05), and Vallitalea (p<0.05). Additionally, acetate (p<0.01), butyrate (p<0.05), valerate (p = 0.01), and total SCFAs (p = 0.01) were upregulated in the RPS5 treatment group Conclusion: Feeding 5% RPS altered bacterial community composition and promoted gut health in weaned piglets. Thus, resistant starch as a feed additive may prevent diarrhea in piglets during weaning.

QTL Identification for Slow Wilting and High Moisture Contents in Soybean (Glycine max [L.]) and Arduino-Based High-Throughput Phenotyping for Drought Tolerance

  • Hakyung Kwon;Jae Ah Choi;Moon Young Kim;Suk-Ha Lee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.25-25
    • /
    • 2022
  • Drought becomes frequent and severe because of continuous global warming, leading to a significant loss of crop yield. In soybean (Glycine max [L.]), most of quantitative trait loci (QTLs) analyses for drought tolerance have conducted by investigating yield changes under water-restricted conditions at the reproductive stages. More recently, the necessity of QTL studies to use physiological indices responding to drought at the early growth stages besides the reproductive ones has arisen due to the unpredictable and prevalent occurrence of drought throughout the soybean growing season. In this study, we thus identified QTLs conferring wilting scores and moisture contents of soybean subjected to drought stress in the early vegetative stage using an recombinant inbred line (RIL) population derived from a cross between Taekwang (drought-sensitive) and SS2-2 (drought-tolerant). For the two traits, the same major QTL was located on chromosome 10, accounting for up to 11.5% of phenotypic variance explained with LOD score of 12.5. This QTL overlaps with a reported QTL for the limited transpiration trait in soybean and harbors an ortholog of the Arabidopsis ABA and drought-induced RING-D UF1117 gene. Meanwhile, one of important features of plant drought tolerance is their ability to limit transpiration rates under high vapor pressure deficiency in response to mitigate water loss. However, monitoring their transpiration rates is time-consuming and laborious. Therefore, only a few population-level studies regarding transpiration rates under the drought condition have been reported so far. Via employing an Arduino-based platform, for the reasons addressed, we are measuring and recording total pot weights of soybean plants every hour from the 1st day after water restriction to the days when the half of the RILs exhibited permanent tissue damage in at least one trifoliate. Gradual decrease in moisture of soil in pots as time passes refers increase in the severity of drought stress. By tracking changes in the total pot weights of soybean plants, we will infer transpiration rates of the mapping parents and their RILs according to different levels of VPD and drought stress. The profile of transpiration rates from different levels of severity in the stresses facilitates a better understanding of relationship between transpiration-related features, such as limited maximum transpiration rates, to water saving performances, as well as those to other drought-responsive phenotypes. Our findings will provide primary insights on drought tolerance mechanisms in soybean and useful resources for improvement of soybean varieties tolerant to drought stress.

  • PDF