• 제목/요약/키워드: Through-thickness Crack

검색결과 170건 처리시간 0.027초

Analysis on Stitched Mode I Specimen Using Spring Elements

  • Tapullima, Jonathan;Sim, Hyung Woo;Kweon, Jin Hwe;Choi, Jin Ho
    • Composites Research
    • /
    • 제32권2호
    • /
    • pp.102-107
    • /
    • 2019
  • Several studies related to reinforce composites structures in the through thickness direction have been developed along the years. As follows, in this study a new reinforced process is proposed based on previous experimental results using a novel stitching process in T-joints and one-stitched specimens. It was established the need to perform more analysis under standard test methods to obtain a better understanding. FEM analysis were compared after performed mode I interlaminar fracture toughness test, using different stitching patterns to analyze the through thickness strength with reference laminates without stitching. The stitching patterns were defined in $2{\times}2$ and $3{\times}3$, where the upper and lower head of the non-continuous stitching process (I-Fiber) has proven to influence in a higher through thickness strength of the laminate. In order to design the numerical model, cohesive parameters were required to define the surface to surface bonding elements using the cohesive zone method (CZM) and simulate the crack opening behavior from the double cantilever beam (DCB) test.

균열열림변형을 고려한 모재균열이 있는 직교적층판의 2차원 해석 (Two-Dimensional Analysis of Cross-ply Laminates with Transverse Cracks Based on the Assumed Crack Opening Deformation)

  • 이재화;홍창선;한영명
    • 대한기계학회논문집
    • /
    • 제15권6호
    • /
    • pp.2002-2014
    • /
    • 1991
  • 본 연구에서는 모재균열의 열림변위로 인한 변형을 고려하여, 모재균열 주위 의 응력분포를 구하기 위한 2차원 해석방법을 제안한다. 제안된 방법은 두께방향 다 항식 형태로 가정된 변위성분으로부터 모재균열 주쥐의 변위, 응력분포를 구한다. 본 방법은 적층판의 프아송비(Poisson's ratio) 효과와 열잔류응력(thermal residual stress)의 영향을 고려하였으며, 계면층(interface layer) 개념을 사용하여 특성손상 상태 이후에 발생하는 층간분리를 평가하기 위한 기초자료인 층간수직응력과 층간전단 응력을 결정하였다. 제안된 방법의 타당성을 검증하기 위하여, 유한요소해석(finite element analysis)을 수행하여 제안된 방법의 응력분포 결과를 유한요소해석 결과와 비교하여 보았다.

원주방향 관통균열을 갖는 원통형 쉘 구조의 패치보강 해석 (Analysis of Patched Cylindrical Shells with Circumferential Through-Wall Cracks)

  • 안재석;김영욱;우광성
    • 대한토목학회논문집
    • /
    • 제32권6A호
    • /
    • pp.411-418
    • /
    • 2012
  • 이 연구에서는 수치해석 실험을 통하여, 원주방향 관통균열을 갖는 원통형 쉘의 패치보강 전후의 거동에 대한 평가와 다양한 변수에 따른 패치보강 효과를 분석하였다. 해석 모델의 신뢰성을 높이기 위해, h-법 및 p-법에 기초한 모델링, 두 가지 방법이 동시에 고려되었다. 또한 선형탄성파괴역학 개념에 기초하여 에너지 방출률을 산정하기 위해, 등가영역적분법 및 가상균열확장법이 고려되었다. 해석 예제로서, 먼저 연구에서 수행된 h-법 및 p-법 유한요소 모델을 검증하기 위해, 패치 보강전의 인장력을 받는 관통 균열이 있는 쉘 구조물이 해석되었으며, 해석 결과값들과 여러 참고문헌 값들이 비교되었다. 그리고 패치 보강된 원통형 쉘 시스템에서의 접착제 두께, 접착제 전단탄성계수, 패치 두께, 패치 재료, 균열 길이 등의 여러 설계 변수에 대한 민감도 해석이 수행되었다.

틸팅열차 차체용 탄소섬유직물/에폭시 복합재의 모우드 I 층간파괴인성 평가 (Evaluation of Mode I Interlaminar Fracture Toughness for Carbon Fabric/Expocy Composite for Tilting Train Carbody)

  • 허광수;김정석;윤성호
    • 한국철도학회논문집
    • /
    • 제8권6호
    • /
    • pp.573-580
    • /
    • 2005
  • Model I interlaminar fracture behaviors of the carbon/epoxy composite, one of the candidate composites for a tilting train carbody, were investigate by the use of DCB(Double cantilever beam) specimens. These specimens were made of CF3327 plain woven fabric with epoxy resin, and an artificial starter delamination was fabricated by inserting Teflon film with the thickness of $12.5{\mu}m$ of $25.0{\mu}m$ at the one end of the specimen. Mode I interlaminar fracture toughness was evaluated for the specimens with the different thickness of an inserter. Also delamination propagating behaviors and interlaminar fracture surface were examined through an ooptical travelling scope and a scanning electron microscope. We found that abruptly unstable crack propagation called as stick-slip phenomena was observed. In addition, interlaminar fracture behaviors were affected on the location and the morphology of a crack tip as well as an interface region.

New test method for real-time measurement of SCC initiation of thin disk specimen in high-temperature primary water environment

  • Geon Woo Jeon;Sung Woo Kim;Dong Jin Kim;Chang Yeol Jeong
    • Nuclear Engineering and Technology
    • /
    • 제54권12호
    • /
    • pp.4481-4490
    • /
    • 2022
  • In this study, a new rupture disk corrosion test (RDCT) method was developed for real-time detection of stress corrosion cracking (SCC) initiation of Alloy 600 in a primary water environment of pressurized water reactors. In the RDCT method, one side of a disk specimen was exposed to a simulated primary water at high temperature and pressure while the other side was maintained at ambient pressure, inducing a dome-shaped deformation and tensile stress on the specimen. When SCC occurs in the primary water environment, it leads to the specimen rupture or water leakage through the specimen, which can be detected in real-time using a pressure gauge. The tensile stress applied to the disk specimen was calculated using a finite element analysis. The tensile stress was calculated to increase as the specimen thickness decreased. The SCC initiation time of the specimen was evaluated by the RDCT method, from which result it was found that the crack initiation time decreased with the decrease of specimen thickness owing to the increase of applied stress. After the SCC initiation test, many cracks were observed on the specimen surface in an intergranular fracture mode, which is a typical characteristic of SCC in the primary water environment.

축방향 및 원주방향 관통균열이 존재하는 나선형 전열관의 파손 외압 평가 (Investigation of Maximum External Pressure of Helically Coiled Steam Generator Tubes with Axial and Circumferential Through-Wall Cracks)

  • 임은모;허남수;최신범;유제용;김지호;최순
    • 한국생산제조학회지
    • /
    • 제22권3_1spc호
    • /
    • pp.573-579
    • /
    • 2013
  • Once-through helically coiled steam generator tubes subjected to external pressure are of interest because of their application to advanced small- and medium-sized integral reactors, in which a primary coolant with a relatively higher pressure flows outside the tubes, while secondary water with a relatively lower pressure flows inside the tubes. Another notable point is that the values of the mean radius to thickness ratio of these steam generator tubes are very small, which means that a thick-walled cylinder is employed for these steam generator tubes. In the present paper, the maximum allowable pressure of helically coiled and thick-walled steam generator tubes with through-wall cracks under external pressure is investigated based on a detailed nonlinear three-dimensional finite element analysis. In terms of the crack orientation, either circumferential or axial through-wall cracks are considered. In particular, in order to quantify the effect of the crack location on the maximum external pressure, these cracks are assumed to be located in the intrados, extrados, and flank of helically coiled cylinders. Moreover, an evaluation is also made of how the maximum external pressure is affected by the ovality, which might be inherently induced during the tube coiling process used to fabricate the helically coiled steam generator tubes.

면내회전강성도를 갖는 철근콘크리트 쉘요소의 개발 (Development of Reinforced Concrete Shell Element with Drilling Rotational Stiffness)

  • 김태훈;유영화;신현목
    • 콘크리트학회논문집
    • /
    • 제11권6호
    • /
    • pp.47-56
    • /
    • 1999
  • In this paper, a nonlinear finite element procedure is presented for the analysis of reinforced concrete shell structures. The 4-node quadrilateral flat shell finite element with drilling rotational stiffness is developed. The layered approach is used to discretize behavior of concrete and reinforcement through the thickness. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. The smeared crack approach is incorporated. The steel reinforcement is assumed to be in a uniaxial stress state and to be a smeared in a layer. The proposed numerical method for nonlinear analysis of reinforce concrete shells will be verified by comparison with reliable experimental results.

증기발생기 전열관의 균열성 결함에 대한 와전류 신호 평가 (An Analysis of Eddy Current Signals for the Crack-like Defects in the Steam Generator Tubes)

  • 강기원
    • 비파괴검사학회지
    • /
    • 제13권1호
    • /
    • pp.40-45
    • /
    • 1993
  • The steam generator tubes of the nuclear power plant should be inspected using eddy current techniques. Recently the crack-like defects become a major concern for the integrity of the steam generator tubes. These defects could be detected by the MRPC(Motorized Rotating Pancake Coil) method, not by the conventional bobbin coil method. In this paper it has been attempted to estimate the length of the cracks at the tube expansion region using of MRPC technique. The lengths of both axial and circumferential cracks show a tendency of overestimation compared to the real lengths. As the depths of the defects decrease from 100% through 50% of the wall thickness, the error of the length estimation is increased.

  • PDF

틸팅열차 차체8 탄소섬유직물/에폭시 복합재의 모우드 II 층간파괴인성 평가 (Evaluation of Mode II Interlaminar Fracture Toughness for Carbon Fabric/Epoxy Composites for Tilting Train Carbody)

  • 윤성모;이은동;허광수;정종절;신광복
    • 한국철도학회논문집
    • /
    • 제8권2호
    • /
    • pp.195-201
    • /
    • 2005
  • Mode II interlaminar fracture behaviors of carbon fabric/epoxy composites, which are applicable to tilting train carbodies, was investigated by the ENF (End notched flexure) test. The specimens were made of CF3327 plain woven fabric with epoxy and a starter delamination at one end was made by inserting Teflon film with the thickness of 12.5$mu$m or 25.0$mu$m. The equation for mode II interlaminar fracture toughness was suggested based on the effective crack length from the compliance of load-displacement curve. Mode II interlaminar fracture toughness was evaluated for several types of the specimens. Also crack propagating behaviors and fracture surfaces were examined through an optical travelling scope and a scanning electron microscope.

$H_2S$ 가스포화 염산수용액에 의한 용접구조용강의 응력부식균열 발생거동 (Stress Corrosion Cracking Initiation Behavior of Weldable Structural Steel in $H_2S$ Gas Saturated HCl Solution)

  • 오세욱;김재철;김광영
    • 한국해양공학회지
    • /
    • 제4권1호
    • /
    • pp.88-100
    • /
    • 1990
  • Among the test methods to evaluate stress-corrosion cracking(SCC) on the basis of fracture mechanics, constant displacement(bolt) loading method using modified-WOL specimen is practically convenient. In this test method, compliance formula is generally required to calculate load(consequently $K_{ISCC}$). There are many problems in using the analytic compliance formula to calculate $K_{ISCC}$, so we had proposed the experimental $K_{ISCC}$ evaluation technique in the previous report. This study has employed the slightly altered configuration of modified-WOL specimen made of weldable structural stee(BS360-50D). With these specimens, stress-corrosion tests have been performed in $H_2S$ gas saturated 20% HCl solution. Through the test, the problems as mentioned earlier have been discussed again, and the proposed evaluation technique has been verified. And the stress-corrosion cracks and hydrogen blisters have been investigated in the initiation step with the aids of metallurgical micrographs, SEM fractographs, and EPMA analysis. The inclusions segregated in the mid-thickness region traps hydrogen to produce the hydrogen blistering. The applied or residual stress does not contribute the occurrence of the blister. Hydrogen absorbed into the mid-thickness region is consumed to produce the blistering so that stress-corrosion crack could hardly be detected at that region. The stress-corrosion cracks initiate from the inclusions and propagate in radial pattern. And the initiation site is remote from the crack tip and is inclined from the crack plane, which is assumed to be caused by the triaxial stress and the amount of the absorbed hydrogen.

  • PDF