• Title/Summary/Keyword: Through crack

Search Result 1,400, Processing Time 0.173 seconds

Application of Headed Bars with Small Head in Exterior Beam-Column Joints Subjected to Reversed Cyclic Loads (반복하중을 받는 외부 보-기둥 접합부에서 작은 헤드를 사용한 Headed Bar적용)

  • Ha, Sang-Su;Choi, Dong-Uk;Lee, Chang-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.4
    • /
    • pp.411-420
    • /
    • 2007
  • The applicability of headed bars in exterior beam-column joints under reversed cyclic loading was investigated. A total of ten pullout tests were first performed to examine pullout behavior of headed bars subjected to monotonic and cyclic loading with test variables such as connection type between head and bar stem (weld or no weld), loading methods (monotonic or cyclic loading), and head shape (small or large circular head and square head). Two full-scale beam-column joint tests were then performed to compare the structural behavior of exterior beam-column joints constructed using two different reinforcement details: i.e. $90^{\circ}$ standard hooks and headed bars. Both joints were designed following the recommendations of ACI-ASCE Committee 352 for Type 2 performance: i.e. the connection is required to dissipate energy through reversals of deformation into inelastic range. The pullout test results revealed that welded head to the stem did not necessarily result in increased pullout strength when compared to non-welded head. Relatively large circular head resulted in higher peak load than smaller circular and square head. Both beam-column joints with conventional $90^{\circ}$ hooks and headed bars behaved similarly in terms of crack development, hysteresis curves, and peak strengths. The joint using the headed bars showed better overall structural performance in terms of ductility, deformation capacity, and energy dissipation. These experimental results demonstrate that the headed bars using relatively small head can be properly designed far use in external beam-column joint.

Study on Effect of Anchor Bolt by Thermal Expansion of Sulfur Storage Tank under High Temperature (고온을 받는 유황저장탱크의 열팽창에 의한 앵커볼트 영향에 관한 연구)

  • Jung, Wook-Hwan;Kim, Jeong-Soo;Kim, Tae-Min;Kim, Moon-Kyum
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.5
    • /
    • pp.483-490
    • /
    • 2016
  • In plant industry, sulfur storage tank is made of steel and annular plate is connected with concrete foundation of ring wall type by anchor bolt. Due to keep sulfur at high temperature in tank by coil, sulfur storage tank is expanded larger than another tank stores fluid at room temperature. Generally, structural design of tank foundation is performed analysis with loading of temperature gradient between inner and outer surface, this method can't consider the phenomenon that load is intensively transferred to concrete foundation at anchor bolt. This means that temperature load is underestimated and causes crack of concrete near anchor bolt. In this study, evaluation formula considering temperature load transfer mechanism through anchor bolt is proposed and load acting on concrete foundation is rationally decided. For this purpose, it is analyzed variation of thermal load per various anchor bolt number using finite element model including tank annular plate and anchor bolt. Solution is proposed as specified term combining result of analysis and theoretical solution for evaluating load transferred by anchor bolt. For confirmation of validation of proposed formula, it is applied in design of sulfur storage tank at plant site, it shows that the formula can be practically applied.

Long-term Performance Prediction of Piezoelectric Energy Harvesting Road Using a 3-Dimensional Finite Element Method (3차원 유한요소 해석을 통한 압전에너지 도로의 장기 공용성 예측)

  • Kim, Hyun Wook;Nam, Jeong-Hee;Choi, Ji Young
    • International Journal of Highway Engineering
    • /
    • v.19 no.5
    • /
    • pp.107-115
    • /
    • 2017
  • PURPOSES : The piezoelectric energy road analysis technology using a three-dimensional finite element method was developed to investigate pavement behaviors when piezoelectric energy harvesters and a new polyurethane surface layer were installed in field conditions. The main purpose of this study is to predict the long-term performance of the piezoelectric energy road through the proposed analytical steps. METHODS : To predict the stresses and strains of the piezoelectric energy road, the developed energy harvesters were embedded into the polyurethane surface layer (50 mm from the top surface). The typical type of triaxial dump truck loading was applied to the top of each energy harvester. In this paper, a general purpose finite element analysis program called ABAQUS was used and it was assumed that a harvester is installed in the cross section of a typical asphalt pavement structure. RESULTS : The maximum tensile stress of the polyurethane surface layer in the initial fatigue model occurred up to 0.035 MPa in the transverse direction when the truck tire load was loaded on the top of each harvester. The maximum tensile stresses were 0.025 MPa in the intermediate fatigue model and 0.013 MPa in the final fatigue model, which were 72% and 37% lower than that of the initial stage model, respectively. CONCLUSIONS : The main critical damage locations can be estimated between the base layer and the surface layer. If the crack propagates, bottom-up cracking from the base layer is the main cracking pattern where the tensile stress is higher than in other locations. It is also considered that the possibility of cracking in the top-down direction at the edge of energy harvester is more likely to occur because the material strength of the energy harvester is much higher and plays a role in the supporting points. In terms of long-term performance, all tensile stresses in the energy harvester and polyurethane layer are less than 1% of the maximum tensile strength and the possibility of fatigue damage was very low. Since the harvester is embedded in the surface layer of the polyurethane, which has higher tensile strength and toughness, it can assure a good, long-term performance.

Experimental Study on Coefficient of Air Convection (외기대류계수에 관한 실험적 연구)

  • Jeon, Sang-Eun;Kim, Jin-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.2
    • /
    • pp.305-313
    • /
    • 2003
  • The setting and hardening of concrete is accompanied with nonlinear temperature distribution caused by development of hydration heat of cement. Especially at early ages, this nonlinear distribution has a large influence on the crack evolution. As a result, in order to predict the exact temperature history in concrete structures it is required to examine thermal properties of concrete. In this study, the coefficient of air convection, which presents thermal transfer between surface of concrete and air, was experimentally investigated with variables such as velocity of wind and types of form. From experimental results, the coefficient of air convection was calculated using equations of thermal equilibrium. Finally, the prediction model for equivalent coefficient of air convection including effects of velocity of wind and types of form was theoretically proposed. The coefficient of air convection in the proposed model increases with velocity of wind, and its dependance on wind velocity is varied with types of form. This tendency is due to a combined heat transfer system of conduction through form and convection to air. From comparison with experimental results, the coefficient of air convection by this model was well agreed with those by experimental results.

Experimental investigation of the mechanical behaviors of grouted crushed coal rocks under uniaxial compression

  • Jin, Yuhao;Han, Lijun;Meng, Qingbin;Ma, Dan;Wen, Shengyong;Wang, Shuai
    • Geomechanics and Engineering
    • /
    • v.16 no.3
    • /
    • pp.273-284
    • /
    • 2018
  • A detailed understanding of the mechanical behaviors for crushed coal rocks after grouting is a key for construction in the broken zones of mining engineering. In this research, experiments of grouting into the crushed coal rock using independently developed test equipment for solving the problem of sampling of crushed coal rocks have been carried out. The application of uniaxial compression was used to approximately simulate the ground stress in real engineering. In combination with the analysis of crack evolution and failure modes for the grouted specimens, the influences of different crushed degrees of coal rock (CDCR) and solidified grout strength (SGS) on the mechanical behavior of grouted specimens under uniaxial compression were investigated. The research demonstrated that first, the UCS of grouted specimens decreased with the decrease in the CDCR at constant SGS (except for the SGS of 12.3 MPa). However, the UCS of grouted specimens for constant CDCR increased when the SGS increased; optimum solidification strengths for grouts between 19.3 and 23.0 MPa were obtained. The elastic moduli of the grouted specimens with different CDCR generally increased with increasing SGS, and the peak axial strain showed a slightly nonlinear decrease with increasing SGS. The supporting effect of the skeleton structure produced by the solidified grouts was increasingly obvious with increasing CDCR and SGS. The possible evolution of internal cracks for the grouted specimens was classified into three stages: (1) cracks initiating along the interfaces between the coal blocks and solidified grouts; (2) cracks initiating and propagating in coal blocks; and (3) cracks continually propagating successively in the interfaces, the coal blocks, and the solidified grouts near the coal blocks. Finally, after the propagation and coalescence of internal cracks through the entire specimens, there were two main failure modes for the failed grouted specimens. These modes included the inclined shear failure occurring in the more crushed coal rock and the splitting failure occurring in the less crushed coal rock. Both modes were different from the single failure mode along the fissure for the fractured coal rock after grouting solidification. However, compared to the brittle failure of intact coal rock, grouting into the different crushed degree coal rocks resulted in ductile deformation after the peak strength for the grouted specimens was attained.

A Study for Roughness of Joungbu Expressway (중부고속도로 평탄성 특성에 관한 연구)

  • Kim, Sung-Ho;Suh, Young-Chan;Cho, Yoon-Ho;Park, Kyung-Boo
    • International Journal of Highway Engineering
    • /
    • v.3 no.2 s.8
    • /
    • pp.131-140
    • /
    • 2001
  • Concrete pavement of Jungbu Expressway composed of CRCP(Continuously Reinforced Concrete Pavement) and JCP(Jointed Concrete Pavement). The CRCP was firstly constructed and applied to new expressway in Korea. It is a good source of the study to analyze the performance of CRCP and JCP because it experiences same amount of traffic and environmental loading. Up to the present, condition survey has conducted several times during 13 years but roughness measurement has not been carefully conducted. Through comparisons among several types of pavement(CRCP, JCP, Asphalt) by roughness, CRCP is superior to JCP. In addition, connected sections in the highway such as bridges and tunnels that have higher IRI values, about 5mm/m, than normal sections should be considered appropriated maintenance such as diamond grinding. The relationship between IRI and distresses carried out by Korea Highway Cooperation in 1999 skewed that the number of crack is related to IRI value in JCP, while other distresses of JCP and CRCP are not shown clearly. The comparison study with IRI values between Jungbu Expressway and GPS-3(JCP) and GPS-5(CRCP) of LTPP data also showed that roughness of Jungbu Expressway is not inferior to that of the state. Some of section showed larger values of IRI are linked with under-9round structures for passages and drainages. The overall performance considering only roughness, the CRCP is also superior to JCP in sections with under-ground tunnels.

  • PDF

Manufacture of Cement-Bonded Particleboards from Korean Pine and Larch by Curing of Supercritical CO2 Fluid

  • Suh, Jin-Suk;Hermawan, Dede;Kawai, Shuichi
    • Journal of the Korean Wood Science and Technology
    • /
    • v.28 no.4
    • /
    • pp.41-50
    • /
    • 2000
  • Cement-bonded particleboard is being used as outdoor siding material all over the world, because this composite particularly bears a light weight, high resistance against fire, decay, and crack by cyclic freezing and thawing, anti-shock property, and strength enhancement. Construction systems are currently changing into a frame-building style and wooden houses are being constructed with prefabrication type. Therefore, they require a more durability at outdoor-exposed sides. In this study, the cement hydration property for Korean pine particle, Japanese larch particle and face- and middle layer particles (designated as PB particle below) used in Korean particleboard-manufacturing company was investigated, and the rapid manufacturing characteristics of cement-bonded particleboard by supercritical $CO_2$ curing was evaluated. Korean pine flour showed a good hydration property, however, larch flour showed a bad one. PB particle had a better hydration property than larch flour. The addition of $Na_2SiO_3$ indicated a negative effect on hydration, however, $MgCl_2$ had a positive one. Curing by supercritical $CO_2$ fluid gave a conspicuous enhancement in the performances of cement-bonded particleboards compared to conventional curing. $MgCl_2$ 3%-added PB particle had the highest properties, and $MgCl_2$ 1%-added Korean pine particle had the second class with the conditions of cement/wood ratio of 2.7, a small fraction-screened particle and supercritical curing. On the contrary, the composition of non-hammermilled or large fraction-screened particle at cement/wood ratio of 2.2 was poorer. Also, the feasibility for actual use of 3%-added, small PB particle-screened fraction was greatest of all the conventional curing treatments. Relative superiority of supercritical curing vs. conventional curing at dimensional stability was not so apparent as in strength properties. Through the thermogravimetric analysis, it was ascertained that the peak of a component $CaCO_3$ was highest, and the two weak peaks of calcium silicate hydrate and ettringite and $Ca(OH)_2$ were present in supercritical treatment. Accordingly, it was inferred that the increased formation of carbonates in board contributes to strength enhancement.

  • PDF

Evaluation of Static Behaviour of Orthotropic Steel Deck Considering the Loading Patterns (하중재하 패턴을 고려한 강바닥판의 정적거동 평가)

  • Kim, Seok Tae;Huh, Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.2
    • /
    • pp.98-106
    • /
    • 2011
  • The deck of steel box girder bridges is composed of deck plate, longitudinal rib, and transverse ribs. The orthotropic steel decks have high possibility to fatigue damage due to numbers of welded connection part, the heavy contact loadings, and the increase of repeated loadings. Generally, the local stress by the repeated loadings of heavy vehicles causes the orthotropic steel deck bridge to fatigue cracks. The increase of traffic volume and heavy vehicle loadings are promoted the possibility of fatigue cracks. Thus, it is important to exactly evaluate the structural behavior of bridge considering the contact loading area of heavy vehicles and real load patterns of heavy trucks which have effects on the bridge. This study estimated the effect of contact area of design loads and real traffic vehicles through the finite element analysis considering the real loading conditions. The finite element analysis carried out 4 cases of loading patterns in the orthotropic steel deck bridge. Also, analysis estimated the influence of contact area of real truck loadings by the existence of diaphragm plate. The result of finite element analysis indicated that single tire loadings of real trucks occurred higher local stress than one of design loadings, and especially the deck plate got the most influence by the single tire loading. It was found that the diaphragm attachment at joint part of longitudinal ribs and transverse ribs had no effects on the improvement of structural performance against fatigue resistance in elastic analysis.

Characteristics of Shear Behavior of Reinforced Concrete Beams Strengthened with Near Surface Mounted CFRP Strips (CFRP 스트립 표면매립공법으로 보강된 철근콘크리트 보의 전단거동 특성)

  • Han, Sang Hoon;Hong, Ki Nam;Shin, Byoung Gil;Lim, Jin Mook;Kwak, So Shin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.5
    • /
    • pp.178-189
    • /
    • 2011
  • Tests and analyses were performed in this study to assess the shear strength of Reinforced Concrete(RC) members strengthened by the Near Surface Mounted(NSM) technique in shear, which is drawing attention as an alternative to the Carbon Fiber Reinforced Polymer(CFRP) bonding strengthening technique. Four-point bending tests were performed on 7 RC specimens without any shear reinforcement. The test variables such as the inclination of CFRP strip (45 degrees and 90 degrees), and the spacing of CFRP strip (250mm, 200mm, 150mm, 100mm) were considered. Through the testing scenarios, the effect of each test variable on the failure mode and the shear strength of the RC members strengthened by the NSM technique in shear were assessed. The test results show that the specimens with CFRP strips at 45 degrees go to failure as a result of the strip fracture, but the specimens with CFRP strips at 90 degrees go to failure as a result of the slip of strips. Strips at 45 degrees was the more effective than strips at 90 degrees, not only in terms of increasing beam shear resistance but also in assuring larger deformation capacity at beam failure. In addition, the RBSN analysis appropriately predicted the crack formation and the load-displacement response of the RC members strengthened by the NSM technique in shear.

A Study on the Manufacturing Characteristics and Field Applicability of Engineering-scale Bentonite Buffer Block in a High-level Nuclear Waste Repository (고준위폐기물처분장 내 공학규모의 균질 완충재 블록 성형특성 및 현장적용성 분석)

  • Kim, Jin-Seop;Yoon, Seok;Cho, Won-Jin;Choi, Young-Chul;Kim, Geon-Young
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.1
    • /
    • pp.123-136
    • /
    • 2018
  • The objective of this study is to propose a new methodology to fabricate a reliable engineering-scale buffer block, which shows homogeneous and uniform distribution in buffer block density, for in-situ experiments. In this study, for the first time in Korea, floating die press and CIP (Cold Isostatic Press) are applied for the manufacture of an engineering-scale bentonite buffer. The optimized condition and field applicability are also evaluated with respect to the method of manufacturing the buffer blocks. It is found that the standard deviation of the densities obtained decreases noticeably and that the average dry density increases slightly. In addition, buffer size is reduced by about 5% at the same time. Through the test production, it is indicated that the stress release phenomenon decreases after the application of the CIP method, which leads to a reduction in crack generation on the surface of the buffer blocks over time. Therefore, it is confirmed that the production of homogeneous buffer blocks on industrial scale is possible using the method suggested in this study, and that the produced blocks also meet the design conditions for dry density of buffer blocks in the AKRS (Advanced Korea Reference Disposal System of HLW).