• 제목/요약/키워드: Threshold stress intensity factor

검색결과 87건 처리시간 0.021초

SA516/70 압력용기 강의 저온 피로균열 진전 속도에 미치는 응력비의 영향 (The Effect of Stress Ratio on Fatigue Crack Propagation Rate in SA516/70 Pressure Vessel Steel at Low Temperature)

  • 박경동;김정호;최병국;임만배
    • 한국안전학회지
    • /
    • 제16권1호
    • /
    • pp.18-24
    • /
    • 2001
  • The fatigue crack growth behavior of the SA516/70 steel which is used for pressure vessels was examined experimentally at room temperature, $-60^{\circ}C$,$-80^{\circ}C$ and $-100^{\circ}C$ with stress ratio of R=0.05, 0.1 and 0.3. Fatigue crack propagation rate da/dN related with stress intensity factor range ${\Delta}K$ was influenced by stress ratio in stable of fatigue crack growth (Region II) with an increase in ${\Delta}K$. The resistance of fatigue crack growth at low temperature is higher compared with that at room temperature, which is attributed to the extent of plasticity-induced by compressive residual stress according to the cyclic loads. Fractographic examinations reveal that the differences of the fatigue crack growth characteristics between room and low temperatures are mainly explained by the crack closure and the strengthening due to the plasticity induced and roughness induced.

  • PDF

저온 압력용기용 SA516강의 응력비에 따른 피로크랙 전파특성에 관한 연구 (A Study on the Stress ratio affect on the Fatigue Crack Characteristics of Pressure Vessel SA516 Steel at Low Temperature)

  • 박경동;하경준;박형동
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제25권6호
    • /
    • pp.1228-1236
    • /
    • 2001
  • In this study, CT specimens were prepared from ASTH A5l6 steel which was used for pressure vessel plates for moderate and lower temperature service. And we got the fellowing characteristics from fatigue crack growth test carried out in the environment of room and low temperature at $25^{\circ}C$ , $-30^{\circ}C$, $-60^{\circ}C$, $-80^{\circ}C$, $-100^{\circ}C$ and $-120^{\circ}C$ and in the range of stress ratio of 0.1, 0.3 by means of opening mode displacement. At the constant stress ratio, the Threshold stress intensity factor range ΔAKth in the early stage of fatigue crack growth (Region I) and stress intensity factor range $\DeltaK$ in the stable of fatigue crack growth (Region II) was increased in proportion to descend temperature. It assumed that the fatigue resistance characteristics and fracture strength at low temperature is considerable higher than that of room temperature in the early stage and stable of fatigue crack growth region. The straight line slope relation of logarithm da/dN-$\Delta$K in Region II that is, the fatigue clack growth exponent m increased with descending temperature at the constant stress ratio. It assumed that the fatigue crack growth rate da/dN is rapid in proportion to descend temperature in Region II and the cryogenic-brittleness greatly affect a material with decreasing temperature.

  • PDF

저온 압력용기용 SA516/60강의 피로균열 진전 속도에 미치는 응력비의 영향 (The Effect of Stress Ratio on Fatigue Crack Propagation Rate in SA516/60 Pressure Vessel Steel at Low Temperature)

  • 박경동;하경준;박상오
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2001년도 추계학술대회 논문집(Proceeding of the KOSME 2001 Autumn Annual Meeting)
    • /
    • pp.80-87
    • /
    • 2001
  • The fatigue crack growth behavior of the SA516/60 steel which is used for pressure vessels was examined experimentally at room temperature $25^{\circ}C, -30^{\circ}C, -60^{\circ}C, -80^{\circ}C, -100^{\circ}C$ and -l2$0^{\circ}C$ with stress ratio of R=0.05, 0.1 and 0.3. Fatigue crack propagation rate da/dN related with stress intensity factor range ΔK was influenced by stress ratio in stable of fatigue crack growth (Region II) with an increase in ΔK. The resistance of fatigue crack growth at low temperature is higher compared with that at room temperature, which is attributed to the extent of plasticity-induced by compressive residual stress according to the cyclic loads. Fractographic examinations reveal that the differences of the fatigue crack growth characteristics between room and low temperatures are mainly explained by the crack closure and the strengthening due to the plasticity induced and roughness induced.

  • PDF

자동차 현가장치재의 부식피로수명에 따른 압축잔류응력의 영향 (The Effect of Compressive Residual Stress according to Corrosion Fatigue Life of Automobile Suspension Material)

  • 기우태;박성모;문광석;박경동
    • 한국자동차공학회논문집
    • /
    • 제16권5호
    • /
    • pp.1-7
    • /
    • 2008
  • A study of new materials that are light-weight, high in strength has become vital to the machinery of auto industries. But then, there are a lot of problems with developing such materials that require expensive tools, and a great deal of time and effort. Therefore, the improvement of fatigue strength and fatigue life are mainly focused on by adopting residual stress. And Influence of corrosive condition for corrosion fatigue crack was investigated, after immersing in 3.5%NaCl, $10%HNO_3$+3.5%HF, $6%FeCl_3$. The immersion period was performed for 365days. The compressive residual stress was imposed on the surface according to each shot velocity based on shot peening, which is the method of improving fatigue life and strength. Fatigue life shows more improvement in the shot peened material than in the un peened material in corrosion conditions. The threshold stress intensity factor range was decreased in corrosion environments over ambient. Compressive residual stress of surface on the Shot-peen processed operate resistance force of fatigue crack propagation. The fatigue crack growth rate of the Shot-peened material was lower than that of the un peened material. Also m, fatigue crack growth exponent and number of cycle of the shot peened material was higher than that of the un peened material. That is concluded from effect of da/dN.

스프링강의 피로크랙진전 특성에 미치는 쇼트피닝 투사속도의 영향 (An Effect of Shot Velocity of Shot-peening on A Property of Growth Behavior of Fatigue Crack for Spring Steel)

  • 박경동;노영석
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2002년도 추계학술대회 논문집
    • /
    • pp.341-346
    • /
    • 2002
  • In this study, an effect that compressive residual stress formed by shot-peening the surface of spring steel(JISG SUP-9) at each shot velocity(1800, 2200, 2600, 3000rpm) on the fatigue crack growth property and threshold stress intensity factor, ${\Delta}K_{th}$, was examined. Followings are the result (1) Compressive residual stress on surface of specimen was determined at each -601 MPa(1800rpm), -638 MPa(2200rpm), -587 MPa (2600rpm), -550 MPa(3000rpm) by shot velocity of shot peening and threshold stress intensity factor, ${\Delta}K_{th}$, fatigue crack growth rate, da/dN, on fatigue crack growth is obstructed by the compressive residual stress was determined at each $5.619\;MPa\sqrt{m}$(Un-peening), $8.319\;MPa\sqrt{m}$(1800rpm), $8.797\;MPa\sqrt{m}$(2200rpm), $7.835\;MPa\sqrt{m}$(2600rpm), $7.352\;MPa\sqrt{m}$(3000rpm) (2) Existing compressive residual stress by effect of shot velocity of shot-peening on relation of crack length. a, and number of cycle, N, was 2 times progressed in case of 2200rpm than specimen of Un-peening on fatigue life. And fatigue life was 1.6 times progressed incase of 3000rpm by Over peening. (3) Fatigue life of Material on Paris' law, $da/dN=C({\Delta}K)^m$, that effect of material constant, C, and fatigue crack growth exponent, m, was influenced by effect of. C and m.

  • PDF

저온 압력용기용 SA516강의 응력비에 따른 피로크랙 전파특성에 관한 연구 (A Study of Stress ratio on the Fatigue Crack Growth Characteristics of Pressure Vessel SA516 Street at Low Temperature)

  • 박경동;하경준
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2001년도 춘계학술발표대회 개요집
    • /
    • pp.220-223
    • /
    • 2001
  • In this study, CT specimens were prepared hem ASTM SA516 which was used for pressure vessel plates for room and low temperature service. And we got the following characteristics from fatigue crack growth test carried out in the environment of room and low temperature at $25^{\circ}C$, -3$0^{\circ}C$, -6$0^{\circ}C$, -8$0^{\circ}C$, -l$0^{\circ}C$ and -l2$0^{\circ}C$ and in the range of stress ratio of 0.1, 0.3 by means of opening mode displacement. At the constant stress ratio, the threshold stress intensity factor range ΔK$_{th}$ in the early stage of fatigue crack growth ( Region I ) and stress intensity factor range ΔK in the stable of fatigue crack growth ( Region II) was increased in proportion to descend temperature. It assumed that the fatigue resistance characteristics and fracture strength at low temperature is considerable higher than that of room temperature in the early stage and stable of fatigue crack growth region. The straight line slope relation of logarithm da/dN - ΔK in Region II, that is, the fatigue crack growth exponent m increased with descending temperature at the constant stress ratio. It assumed that the fatigue crack growth rate da/dN is rapid in proportion to descend temperature in Region H and the cryogenic-brittleness greatly affect a material with decreasing temperature.e.greatly affect a material with decreasing temperature.

  • PDF

2024-T3 A1 합금의 이방성이 피로균열진전속도와 정류거동에 미치는 영향 (Effect of Anisotropy on Fatigue Crack Propagation Rate and Arrest Behavior with 2024-T3 Alumunum Alloy)

  • 오세욱;김태형;오정종
    • 한국해양공학회지
    • /
    • 제7권1호
    • /
    • pp.124-132
    • /
    • 1993
  • In order to examine the effect of anisotropy and stress ratio on fatigue crack propagation rate and opening-closing behavior and also arrest behavior by single tension peak overload, the fatigue tests of constant amplitude atress and single tension peak overload adding to cycle of constant amplitude were carried out in stress ratio of -0.4, -0.2, and 0.4 with materials of T-L and L-T directions in 2024-T3 aluminum alloy plate. Crack opening-closing begavior were measured by the compliance method using COD gage and strain gage. In case of the crack opening-closing behavior was measured by strain gage, the effect of stress ratio is unchangeable. But in the case of COD gage, that is remarkably decreased. Fictitious effective stress intensity factor(U sub(f)) and effective stress intensity factor ratio(U) in L-T direction was higher than those in T-L direction and also threshold arrest overload ratio incrased as stress ratio decreased and that of T-L direction was higher than that in L-T direction.

  • PDF

차량용 압력용기용 강의 피로파괴에 미치는 온도의 영향 (The Effect of Temperature on Fatigue Fracture of Pressure Vessel Steel for Vehicle)

  • 박경동;김영대;김형자
    • 한국자동차공학회논문집
    • /
    • 제11권5호
    • /
    • pp.219-226
    • /
    • 2003
  • The fatigue crack growth behavior of the SA516/60 steel used for pressure vessels was examined experimentally at room temperatures $25^{\circ}C$,$-30^{\circ}C$, $-60^{\circ}C$, $-80^{\circ}C$, $-100^{\circ}C$ and $-120^{\circ}C$ with stress ratio of R=0.05, 0.1 and 0.3. fatigue crack propagation rate da/dN related with stress intensity factor range $\Delta$K was influenced by stress ratio in stable than fatigue crack growth (Region II) with an increase in $\Delta$K. The resistance of fatigue crack growth at low temperature is higher compared with that at room temperature, which is attributed to the extent of plasticity-induced by compressive residual stress according to the cyclic loads. Fractographic examinations reveal that the differences of the fatigue crack growth characteristics between room and low temperatures are explained mainly by the crack closure and the strengthening due to the plasticity near the crack tip and roughness of the crack faces induced.

저온 압력용기용 강의 피로파괴에 미치는 온도의 영향 (The Effect of Temperature on Fatigue Fracture in Pressure Vessel Steel at Low Temperature)

  • 박경동;하경준
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2002년도 추계학술대회 논문집
    • /
    • pp.359-365
    • /
    • 2002
  • The fatigue crack growth behavior of the SA516/60 steel which is used for pressure vessels was examined experimentally at room temperature $25^{\circ}C,\;-30^{\circ}C,\;-60^{\circ}C,\;-80^{\circ}C,\;-100^{\circ}C$ and $-120^{\circ}C$ with stress ratio of R=0.05, 0.1 and 0.3. Fatigue crack propagation rate da/dN related with stress intensity factor range ${\Delta}K$ was influenced by stress ratio in stable of fatigue crack growth (Region II) with an increase in ${\Delta}K$. The resistance of fatigue crack growth at low temperature is higher compared with that at room temperature, which is attributed to tile extent of plasticity-induced by compressive residual stress according to the cyclic loads. Fractographic examinations reveal that the differences of the fatigue crack growth characteristics between room and low temperatures are mainly explained by the crack closure and the strengthening due to the plasticity induced and roughness induced.

  • PDF

피로 균열 전파 거동에 대한 실험식 (An Experimental Equation on the Fatigue Crack Growth Rate Behavior)

  • 김상철;강동명;우창기
    • 한국정밀공학회지
    • /
    • 제8권2호
    • /
    • pp.27-35
    • /
    • 1991
  • We propose the crack growth rate equation which applied over three regions (threshold region, stable region, unstable region) of fatigue crack propagation. Constant stress amplitude fatigue tests are conducted for four materials under three stress ratios of R=0.05, R=0.2 and R=0.4. Materials which have different mechanical properties i.e. stainless steel, low carbon steel, medium carbon steel and aluminum alloy are used. The fatigue crack growth rate equation is given by $da/dN={\beta} (1-R)^{\delta}\({\DELTA}K-{\DELTA}K_t)^{\alpha} / (K_{cf}-K_{max})$${\alpha}, {\beta}$ , and ${\delta}$ are constants, and ${\Delta}K_t$ is stress intensity factor range at low ${\Delta}K$ region. The constants are obtained from nonlinear least square method. $K_{ef}$is critical fatigue stress intensity factor. The relation between half crack length and number of cycles obtained by integrating the crack growth rate equation is in agreement with the experimental data. It is also experimented with constant maximum stress and decreasing stress ratios, and the fatigue growth rate of each material is in accord with the proposed equation.

  • PDF