• Title/Summary/Keyword: Three-point Bending

Search Result 492, Processing Time 0.028 seconds

An Experimental Study on the Mechanical Properties of HPFRCCs Reinforced with the Micro and Macro Fibers (마이크로 및 매크로 섬유에 의해 보강된 고인성 시멘트 복합재료의 역학적 특성에 관한 실험적 연구)

  • Kim Moo-Han;Kim Jae-Hwan;Kim Yong-Ro;Kim Young-Duck
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.2 s.86
    • /
    • pp.263-271
    • /
    • 2005
  • HPFRCC(High Performance Fiber Reinforced Cementitious Composite) is a class of FRCCs(Fiber Reinforced Cementitious Composites) that exhibit multiple cracking. Multiple cracking leads to improvement in properties such as ductility, toughness, fracture energy, strain hardening, strain capacity, and deformation capacity under tension, compression, and bending. These improved properties of HPFRCCs have triggered unique and versatile structural applications, including damage reduction, damage tolerance, energy absorption, crack distribution, deformation compatibility, and delamination resistance. These mechanical properties of HPFRCCs become different from the kinds and shapes of used fiber, and it is known that the effective size of fiber in macro crack is different from that in micro crack. This paper reports an experimental findings on the mechanical properties of HPFRCCs reinforced with the micro fiber(PP50, PVA100 and PVA200) and macro fiber(PVA660, SF500). Uniaxial compressive tests and three point bending tests are carried out in order to compare with the mechanical properties of HPFRCCs reinforced with micro fibers or hybrid fibers such as compressive strength, ultimate bending stress, toughness, deformation capacity and crack pattern under bending, etc.,

Estimation of Fatigue Crack Growth Behavior of Cracked Specimen Under Mixed-mode Loads (혼합모드 하중을 받는 균열시편의 피로균열진전거동 평가)

  • Han, Jeong Woo;Woo, Eun Taek;Han, Seung Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.7
    • /
    • pp.693-700
    • /
    • 2015
  • To estimate the fatigue crack propagation behavior of compact tension shear (CTS) specimen under mixed-mode loads, crack path prediction theories and Tanaka's equation were applied. The stress intensity factor at a newly created crack tip was calculated using a finite element method via ANSYS, and the crack path and crack increment were then obtained from the crack path prediction theories, Tanaka's equation, and the Paris' equation, which were preprogrammed in Microsoft Excel. A new method called the finite element crack tip updating method (FECTUM) was developed. In this method, the finite element method and Microsoft Excel are used to calculate the stress intensity factors and the crack path, respectively, at the crack tip per each crack increment. The developed FECTUM was applied to simulate the fatigue crack propagation of a single-edge notched bending (SENB) specimen under eccentric three-point bending loads. The results showed that the number of cycles to failure of the specimen obtained experimentally and numerically were in good agreement within an error range of less than 3%.

Load Fidelity Improvement of Piecewise Integrated Composite Beam by Construction Training Data of k-NN Classification Model (k-NN 분류 모델의 학습 데이터 구성에 따른 PIC 보의 하중 충실도 향상에 관한 연구)

  • Ham, Seok Woo;Cheon, Seong S.
    • Composites Research
    • /
    • v.33 no.3
    • /
    • pp.108-114
    • /
    • 2020
  • Piecewise Integrated Composite (PIC) beam is composed of different stacking against loading type depending upon location. The aim of current study is to assign robust stacking sequences against external loading to every corresponding part of the PIC beam based on the value of stress triaxiality at generated reference points using the k-NN (k-Nearest Neighbor) classification, which is one of representative machine learning techniques, in order to excellent superior bending characteristics. The stress triaxiality at reference points is obtained by three-point bending analysis of the Al beam with training data categorizing the type of external loading, i.e., tension, compression or shear. Loading types of each plane of the beam were classified by independent plane scheme as well as total beam scheme. Also, loading fidelities were calibrated for each case with the variation of hyper-parameters. Most effective stacking sequences were mapped into the PIC beam based on the k-NN classification model with the highest loading fidelity. FE analysis result shows the PIC beam has superior external loading resistance and energy absorption compared to conventional beam.

Effect of basalt fibers on fracture energy and mechanical properties of HSC

  • Arslan, Mehmet E.
    • Computers and Concrete
    • /
    • v.17 no.4
    • /
    • pp.553-566
    • /
    • 2016
  • Fracture energy is one of the key parameters reveal cracking resistance and fracture toughness of concrete. The main purpose of this study is to determine fracture behavior, mechanical properties and microstructural analysis of high strength basalt fiber reinforced concrete (HSFRC). For this purpose, three-point bending tests were performed on notched beams produced using HSFRCs with 12 mm and 24mm fiber length and 1, 2 and $3kg/m^3$ fiber content in order to determine the value of fracture energy. Fracture energies of the notched beam specimens were calculated by analyzing load versus crack mouth opining displacement curves by the help of RILEM proposal. The results show that the effects of basalt fiber content and fiber length on fracture energy are very significant. The splitting tensile and flexural strength of HSFRC increased with increasing fiber content whereas a slight drop in flexural strength was observed for the mixture with 24mm fiber length and $3kg/m^3$ fiber content. On the other hand, there was no significant effect of fiber addition on the compressive strength and modulus of elasticity of the mixtures. In addition, microstructural analysis of the three components; cement paste, aggregate and basalt fiber were performed based on the Scanning Electron Microscopy and Energy-Dispersive X-ray Spectroscopy examinations.

Investigation of the structural performance of a masonry domed mosque by experimental tests and numerical analysis

  • Seker, Burcin S.;Cakir, Ferit;Dogangun, Adem;Uysal, Habib
    • Earthquakes and Structures
    • /
    • v.6 no.4
    • /
    • pp.335-350
    • /
    • 2014
  • Historical masonry mosques are the most important structures of Islamic societies. To estimate the static and dynamic behavior of these historical structures, an examination of their restoration studies is very important. In this study, Kara Mustafa Pasha Mosque, which was built as a domed mosque by Kara Mustafa Pasha between 1666-1667 in Amasya, Turkey, has been analyzed. This study investigates the structural behavior and architectural features of the mosque. In order to determine specific mechanical properties, compression and three-point bending tests were conducted on materials, which have similar age and show similar properties as the examined mosque. Additionally, a three-dimensional finite element model of the mosque was developed and the structural responses were investigated through static and dynamic analyses. The results of the analyses were focused on the stresses and displacements. The experimental test results indicate that the construction materials have greatly retained their mechanical properties over the centuries. The obtained maximum compression and tensile stresses from the analyses have been determined as smaller than the materials' strengths. However, the stresses calculated from dynamic analysis might cause structural problems in terms of tensile stresses.

A study of deterioration of reinforced concrete beams under various forms of simulated acid rain attack in the laboratory

  • Fan, Yingfang;Hu, Zhiqiang;Luan, Haiyang;Wang, Dawei;Chen, An
    • Structural Engineering and Mechanics
    • /
    • v.52 no.1
    • /
    • pp.35-49
    • /
    • 2014
  • This paper studies the behaviour of deteriorated reinforced concrete (RC) beams attacked by various forms of simulated acid rain. An artificial rainfall simulator was firstly designed and evaluated. Eleven RC beams ($120mm{\times}200mm{\times}1800mm$) were then constructed in the laboratory. Among them, one was acting as a reference beam and the others were subjected to three accelerated corrosion methods, including immersion, wetting-drying, and artificial rainfall methods, to simulate the attack of real acid rain. Acid solutions with pH levels of 1.5 and 2.5 were considered. Next, ultrasonic, scanning electron microscopy (SEM), dynamic, and three-point bending tests were performed to investigate the mechanical properties of concrete and flexural behaviour of the RC beams. It can be concluded that the designed artificial simulator can be effectively used to simulate the real acid rainfall. Both the immersion and wetting-drying methods magnify the effects of the real acid rainfall on the RC beams.

A numerical study on ice failure process and ice-ship interactions by Smoothed Particle Hydrodynamics

  • Zhang, Ningbo;Zheng, Xing;Ma, Qingwei;Hu, Zhenhong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.2
    • /
    • pp.796-808
    • /
    • 2019
  • In this paper, a Smoothed Particle Hydrodynamics (SPH) method is extended to simulate the ice failure process and ice-ship interactions. The softening elastoplastic model integrating Drucker-Prager yield criterion is embedded into the SPH method to simulate the failure progress of ice. To verify the accuracy of the proposed SPH method, two benchmarks are presented, which include the elastic vibration of a cantilever beam and three-point bending failure of the ice beam. The good agreement between the obtained numerical results and experimental data indicates that the presented SPH method can give the reliable and accurate results for simulating the ice failure progress. On this basis, the extended SPH method is employed to simulate level ice interacting with sloping structure and three-dimensional ice-ship interaction in level ice, and the numerical data is validated through comparing with experimental results of a 1:20 scaled Araon icebreaker model. It is shown the proposed SPH model can satisfactorily predict the ice breaking process and ice breaking resistance on ships in ice-ship interaction.

A STUDY ON THE BOND STRENGTH OF REPAIRED GLASS IONOMER CEMENTS (Repaired glass ionomer cement의 결합강도에 관한 연구)

  • Seo, Su-Jeong;Kim, Shin
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.23 no.2
    • /
    • pp.347-355
    • /
    • 1996
  • The purpose of this study was to compare the bond strengths of different kinds of glass ionomer cements (GIC), which is recently increasing the clinical application in the field of pediatric dentistry and measure the repaired bond strengths in order to examine the clinical applicabilty of partial repaired cases. By using one kind of the light cured type GIC and three kinds of the chemical cured type GIC, the bond strengths of the followings were compared : unrepaired group as control, repaired conditioning group, which was treated the repaired surface using 25% polyacrylic acid and repaired non-conditioning group without surface treatment. Three point bending test was performed under Universal Testing Machine in order to measure the compressive bond strengths. The results were as follows : 1. Light cured GIC had higher bond strength than chemical cured type GIC in both of repaired and unrepaired groups. 2. In repaired cases, all of the materials decreased the bond strength when compared to the control group. In the light cured type, the bond strength of repaired conditioning group decreased 31.6%, repaired non-conditioning group decreased 40.8%. In chemical cured types, the bond strength of repaired conditining group decreased 11.8%, repaired non-conditioning group decreased 20.9%. 3. All the materials, in the case of the chemical treatment on the repaired surface using 25% polyacrylic acid had higher bond strength than untreated but, lower than control group.

  • PDF

Mechanical and Electrical Performance of Anode-Supported Solid Oxide Fuel Cells during Thermal Cyclic Operation (열 사이클에 따른 고체산화물 연료전지의 기계적 및 전기적 특성)

  • Yang, Su-Yong;Park, Jae-Keun;Lee, Tae-Hee;Yu, Jung-Dae;Yoo, Young-Sung;Park, Jin-Woo
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.12 s.295
    • /
    • pp.775-780
    • /
    • 2006
  • Mechanical and electrical performance of anode-supported SOFC single cells were analyzed after thermal cyclic operation. The experiments of thermal cyclic cell-operation were carried out four times and performance of each cell was measured at different temperatures of 650, 700, and $750^{\circ}C$, respectively. As increasing the number of thermal cycle test, single cells showed poor I-V characteristics and lower 4-point bending strength. The anode polarization was also measured by AC-impedance analysis. The observation of the microstructure of the anodes in single cells proved that the average particle size of Ni decreased and the porosity of anode increased. It is thought that the thermal cycle caused the degradation of performance of single cells by reducing the density of three-phase boundary region.

Investigation of Flexural Toughness Development of Steel Fiber Reinforced Concrete at Early Ages (강섬유 보강 콘크리트의 조기 재령에서의 휨 인성 발현에 관한 연구)

  • Lee, Chang-Joon;Shin, Sung-Woo
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.6
    • /
    • pp.103-110
    • /
    • 2009
  • Since the mechanical properties of cement-based materials are time-dependent due to the prolonged cement hydration process, those of fiber reinforced concrete(FRC) may also be time-dependent. Toughness is one of important properties of FRC. Therefore, it should be investigated toughness development of FRCs with curing ages to fully understand the time-dependent characteristics of FRCs. To this end, the effect of curing ages on flexural toughness development of steel fiber reinforced concrete is studied. Three point bending test with notched beam specimen was adapted for this study. Hooked-end steel fiber(DRAMIX 40/30) was used as a fiber ingredient to investigate w/c ratio and fiber volume fraction effect on toughness development during curing. Three different water-cement ratios(0.44, 0.5 and 0.6) and fiber volume fractions(0%, 0.5% and 1%) were used as influence factors. Each mixture specimens were tested at five different ages, 0.5, 1, 3, 7 and 28 days. The study shows that flexure toughness development with age is quite different than other concrete material properties such as compressive strength. The study also shows that the toughness development trend correlates more closely to water/cement ratio than to fiber volume fraction.