• 제목/요약/키워드: Three-phase PWM rectifier

검색결과 103건 처리시간 0.203초

One-Cycle Control Strategy for Dual-Converter Three-Phase PWM Rectifier under Unbalanced Grid Voltage Conditions

  • Xu, You;Zhang, Qingjie;Deng, Kai
    • Journal of Power Electronics
    • /
    • 제15권1호
    • /
    • pp.268-277
    • /
    • 2015
  • In this paper, a dual-converter three-phase pulse width modulation (PWM) rectifier based on unbalanced one-cycle control (OCC) strategy is proposed. The proposed rectifier is used to eliminate the second harmonic waves of DC voltage and distortion of line currents under unbalanced input grid voltage conditions. The dual-converter PWM rectifier employs two converters, which are called positive-sequence converter and negative-sequence converter. The unbalanced OCC system compensates feedback currents of positive-sequence converter via grid negative-sequence voltages, as well as compensates feedback currents of negative-sequence converter via grid positive-sequence voltages. The AC currents of positive- and negative-sequence converter are controlled to be symmetrical. Thus, the workload of every switching device of converter is balanced. Only one conventional PI controller is adopted to achieve invariant power control. Then, the parameter tuning is simplified, and the extraction for positive- and negative-sequence currents is not needed anymore. The effectiveness and the viability of the control strategy are demonstrated through detailed experimental verification.

Model Predictive Power Control of a PWM Rectifier for Electromagnetic Transmitters

  • Zhang, Jialin;Zhang, Yiming;Guo, Bing;Gao, Junxia
    • Journal of Power Electronics
    • /
    • 제18권3호
    • /
    • pp.789-801
    • /
    • 2018
  • Model predictive direct power control (MPDPC) is a widely recognized high-performance control strategy for a three-phase grid-connected pulse width modulation (PWM) rectifier. Unlike those of conventional grid-connected PWM rectifiers, the active and reactive powers of permanent magnet synchronous generator (PMSG)-connected PWM rectifiers, which are used in electromagnetic transmitters, cannot be calculated as the product of voltage and current because the back electromotive force (EMF) of the generator cannot be measured directly. In this study, the predictive power model of the rectifier is obtained by analyzing the relationship among flux, back EMF, active/reactive power, converter voltage, and stator current of the generator. The concept of duty cycle control in the proposed MPDPC is introduced by allocating a fraction of the control period for a nonzero vector and rest time for a zero vector. When nonzero vectors and their duration in the predefined cost function are simultaneously evaluated, the global power ripple minimization is obtained. Simulation and experimental results prove that the proposed MPDPC strategy with duty cycle control for the PMSG-connected PWM rectifier can achieve better control performance than the conventional MPDPC-SVM with grid-connected PWM rectifier.

직류측 센서만을 이용한 3상 PWM 정류기의 제어 (Control of Three-Phase PWM Rectifiers Using Only DC-Side Sensors)

  • 이동춘
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2000년도 전력전자학술대회 논문집
    • /
    • pp.278-281
    • /
    • 2000
  • In this abstract a novel control scheme of voltage-source PWM rectifiers using only dc-side sensors is proposed. The phase currents are reconstructed from switching states of the rectifier and the dc output current. For effective current control the currents are estimated by a predictive state observer. Also both the phase angle and the magnitude of th source voltage are estimated by phase estimator and magnitude estimator respectively. The validity of the proposed ac sensorless technique is verified by experimental results.

  • PDF

Three-Phase Three-Switch Buck-Type Rectifier Based on Current Source Converter for 5MW PMSG Wind Turbine Systems

  • Chae, Beomseok;Suh, Yongsug;Kang, Tahyun
    • Journal of Power Electronics
    • /
    • 제18권5호
    • /
    • pp.1501-1512
    • /
    • 2018
  • This paper proposes a three-phase three-switch buck-type converter as the MSC of a wind turbine system. Owing to a novel switching modulation scheme that can eliminate the unwanted diode rectifier mode switching state, the proposed system exhibits a satisfying ac voltage and current waveform quality and torque ripple up to the level of a typical current source rectifier even under a wide power factor operating range. The proposed system has been verified through simulations and HILS tests on a PMSG wind turbine model of 5MW/4160V. The proposed converter has been shown to provide a stator current THD of 3.9% and a torque ripple of 1% under the rated power condition. In addition to the inherent advantage of the reduced switch count of three-phase three-switch buck-type converters, the proposed switching modulation technique can make this converter a viable solution for the MSC placed inside of a nacelle, which is under severe volume, weight and mechanical vibration design limits.

직류전압 퍼지 제어 기반의 3상 Z-소스 PWM 정류기 (Three-phase Z-source PWM rectifier based on DC voltage fuzzy control)

  • 수효동;정영국;임영철
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2012년도 추계학술대회 논문집
    • /
    • pp.29-30
    • /
    • 2012
  • This paper describes a fuzzy PI control method to control the output voltage of three-phase Z-source PWM rectifier. The proposed fuzzy PI controller is a single input fuzzy with its fuzzification, inferences and de-fuzzification processes. The proposed method adjusts the Kp and Ki in real time in order to find the most suitable Kp and Ki for PI controller and to simplify the controller design. The PI portion of DC voltage controller is controlled by fuzzy method. The simulation is performed with PSIM and MATLAB/SIMULINK and is verified the validity of the proposed approach.

  • PDF

A Kalman Filter based Predictive Direct Power Control Scheme to Mitigate Source Voltage Distortions in PWM Rectifiers

  • Moon, Un-chul;Kim, Soo-eon;Chan, Roh;Kwak, Sangshin
    • Journal of Power Electronics
    • /
    • 제17권1호
    • /
    • pp.190-199
    • /
    • 2017
  • In this paper, a predictive direct power control (DPC) method based on a Kalman filter is presented for three-phase pulse-width modulation (PWM) rectifiers to improve the performance of rectifiers with source voltages that are distorted with harmonic components. This method can eliminate the most significant harmonic components of the source voltage using a Kalman filter algorithm. In the process of predicting the future real and reactive power to select an optimal voltage vector in the predictive DPC, the proposed method utilizes source voltages filtered by a Kalman filter, which can mitigate the adverse effects of distorted source voltages on control performance. As a result, the quality of the source currents synthesized using the PWM rectifier is improved, and the total harmonic distortion (THD) values are reduced, even under distorted source voltages.

단상제어형 3상 PWM 승압용 컨버터의 시뮬레이션 (Simulation of three Phase PWM Boost converter)

  • 강욱중;김상돈;전중함;이광수;서기영;이현우
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 F
    • /
    • pp.2668-2670
    • /
    • 1999
  • In the past, the PWM converter had a large switching loss by hard switching and difficult to high frequency operation. The resonance converter to decrease the switching loss and EMI is required the frequency control and needed to reduce the voltage or current stress at each parts. So, this paper propose the 3-phase boost converter and the method to compensated input power factor by control the amplitude - an instantaneous value of the DC inductor current -and control the switching frequency that a modulation error by the ripple of the DC inductor current. The proposed 3-phase PWM boost converter of single phase control type can takes higher capacity and compensate the power factor by using Feed back controller at each phase for the existing 3-phase bridge rectifier type. Moreover the 3-phase full bridge type using the rectifier at each 3-phase circuit will be small size reactor and compensate input power factor by minimize harmonic components of each phase.

  • PDF

최적주입방식에 의한 3상 전류형 능동필터의 운전특성 (Three-Phase Current-Fed Active Power Filter Operating Characteristics by Optimized Injection Method)

  • 박수영;김호진;이정민;황정호;최규하
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1991년도 하계학술대회 논문집
    • /
    • pp.451-455
    • /
    • 1991
  • The PWM control technique is proposed which can eliminate the harmonic components of the nonsinusoidal ac line current such as the current of 6-phase rectifier by injecting PWM current. TSC(Time-Sharing Control) is adopted to avoid the unbalance between three PWM injection currents at the three-phase system. Also a new power circuit for three-phase filter is suggested for realizing the proposed PWM control technique. The operation characteristics are investigated theoretically and experimentally to show the feasibility of the optimized injection method.

  • PDF

전압형 PWM 컴버터를 이용한 3상 능동 전력 필터에 관한 연구 (A Study on The Three-Phase Active Power Filter Using Voltage-Source PWM Converter)

  • 박민호;김한성;최규하;이제필
    • 대한전기학회논문지
    • /
    • 제38권5호
    • /
    • pp.370-379
    • /
    • 1989
  • 본 논문은 전압형 PWM컨버터를 이용한 3상 능동전력 필터에 관해 연구하였다. 능동 필터는 6-펄스정류기의 입력측에 나타나는 고조파를 제거함과 동시에 무효전력을 보상하며, 3상 PMW인버터와 커패시티로 구성된다. 보상전류를 가급젓 현존하는 전류에 가깝게 발생시키고 필터의 속응성을 개선하고자 히스테리시스 제어기법을 사용하였고 이에 관한 제어회로는 간단히 구성될 수 있다. 그결과 교류입력측 전류는 정현파로 보상되고 역율 또한 거의 1로 개선할 수 있었다.

단위역률동작을 위한 동기 발전기 여자 시스템용 2단 3상 PWM AC/DC 컨버터 (2-stage 3-phase PWM AC/DC Converter for Unity Power Factor Drive of Synchronous Generator)

  • 이상훈;김태형;이동희;안진우
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2007년도 춘계학술대회 논문집
    • /
    • pp.187-192
    • /
    • 2007
  • The terminal voltage of a synchronous generator is maintained by the field current control of excitation system Generally AC/DC converter which is component of AVR(Automatic Voltage Regulator) system for excitation current control is connected to diode rectifier and DC/DC converter system In the case of diode rectifier system of phase controlled converter, AC/DC converter has low power factor and some low order harmonics in the line current. In this paper, two-stage three-phase PWM AC/DC converter is studied to solve these problems, The proposed method is verified by the computer simulations and experimental results in prototype generation system.

  • PDF