• Title/Summary/Keyword: Three-phase AC-DC converter

Search Result 169, Processing Time 0.025 seconds

The Operation Analysis of the Three-phase Bi-directional AC-DC Converter during the Grid Faults (계통사고 시 3상 양방향 AC-DC 컨버터의 동작 분석)

  • Song, In-Beom;Jung, Doo-Yong;Lee, Woo-Won;Lee, Su-Won;Han, Ki-Jun;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2011.11a
    • /
    • pp.305-306
    • /
    • 2011
  • 본 논문에서는 3상 양방향 AC-DC 컨버터의 계통사고 검출기법을 제안한다. 3상 양방향 AC-DC 컨버터는 동기좌표법을 이용하여 PLL(Phase locked loop)을 구현하였고, PLL제어에 있어서 dq변환을 수행한다. dq변환은 입력의 크기 정보와 위상정보를 포함하기 때문에 이를 이용하여 계통사고의 검출이 가능하다. 따라서 본 논문에서는 3상 양방향 AC-DC 컨버터를 이용하여, 계통사고에 대한 검출 기법을 제안하였으며, 계통의 d축, q축 전압대하여 사고를 정의하였다.

  • PDF

Novel Converter Topology for a Three Phase to Three Phase PWM Rectifier/Inverter System (비용절감형 컨버터 구조를 갖는 3상-3상 PWM 정류기/인버터 시스템)

  • Kim, Gi-Taek;Park, Tae-Yeol;Lee, Hae-Chun
    • Journal of Industrial Technology
    • /
    • v.18
    • /
    • pp.323-328
    • /
    • 1998
  • A current controlled VSI-PWM rectifier and inverter with capacitor dc link is regarded as one of the most promising structures for three-phase to three-phase to three-phase power conversion. This type of converter normally requires twelve switches for a rectifier and inverter composed of self turn-off switch such as a bi-polar transistor or IGBT with an anti-parallel diode. In this paper, a new three-phase to three-phase converter for ac motor drives is proposed. The proposed converter employs only eight switches and has the capability of delivering sinusoidal input currents with unity power factor and bidirectional power flow. This paper describes the feasibility and the operational limitations of the proposed structure. A mathematical model of the system is derived using generalized modulation theory and experimental results for steady state and dynamic behavior are presented to verify the developed model.

  • PDF

Online Capacitance Estimation of DC-Link Capacitors using AC Voltage Injection in AC/DC/AC PWM Converters

  • Abo-Khalil Ahmed G.;Lee Dong-Choon
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.381-383
    • /
    • 2006
  • A novel online capacitance estimation method for a DC-link capacitor in a three-phase AC/DC/AC PWM converter is proposed. A controlled AC voltage with a lower frequency than the line frequency is Injected into the DC-link voltage, which then causes AC power ripples at the DC output side. By extracting the AC voltage and power components on the DC output side using digital filters, the capacitance can then be calculated using the recursive least squares method. The proposed method can be simply implemented with only software and no additional hardware. Experimental results confirm that the estimation error is less than 0.2%.

  • PDF

Soft-Start Method of Three Phase AC/DC converter for DC Distribution System Using Sliding Mode Controller. (슬라이딩 모드 제어기를 이용한 직류(DC)배전용 3상 AC/DC컨버터의 소프트 스타트 운전기법)

  • Park, Hyeon Woo;Shin, Soo Cheol;Eom, Ju Kyoung;Lee, Taeck Kie;Lee, Kyung Ho;Won, Chung Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2010.11a
    • /
    • pp.186-187
    • /
    • 2010
  • 최근 직류 출력을 갖는 분산전원 시스템의 증가와 높은 에너지 변환효율을 갖는 직류(DC) 배전 시스템에 대한 관심이 증가하고 있다. 직류(DC) 배전을 빌딩에 적용하기 위해서는 계통연계형 AC/DC 컨버터가 필수적이다. 빌딩용 직류(DC)배전 시스템에서는 다양한 부하들이 상시 대용량의 AC/DC 컨버터에 연결되어 있기 때문에 컨버터의 기동시 과도상태를 최소화한 안정적인 DC전압 확보가 필수적이다. 본 논문에서는 외부 파라미터 변화나 외란에 대한 강인한 성능을 가지는 슬라이딩 모드 제어기를 사용하여 3상 AC/DC 컨버터의 초기 운전 시 발생할 수 있는 DC전압의 오버슈트 저감을 시뮬레이션에 의해 검증하였다.

  • PDF

Development of Operation Control and AC/DC Conversion Integrated Device for DC Power Application of Small Wind Power Generation System (소형 풍력발전시스템의 직류전원 적용을 위한 운전제어 및 AC/DC변환 통합장치 개발)

  • Hong, Kyungjin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.3
    • /
    • pp.179-184
    • /
    • 2019
  • In many countries, such as developing countries where electricity is scarce, small wind turbines in the form of Off Grid are an effective solution to solve power supply problems. In some countries, the expansion of power systems and the decline of electricity-intensive areas have led to the use of small wind power in urban road lighting, mobile communications base stations, aquaculture and seawater desalination. With this change, the size of the small wind power industry is expected to have greater potential than large-scale wind power. In the case of small wind power generators, the generator is controlled at a variable speed, and the voltage and current generated by the generator have many harmonic components. To solve this problem, the AC to DC converter to be studied in this paper is a three-phase step-up type converter with a single switch. The inductor current is controlled in discontinuous mode, and has a characteristic of having a unit power factor by eliminating the harmonic of the input current. The proposed converter is composed of LCL filter and three phase rectification boost converter at the input stage and a single phase full bridge for grid connection. It is a control system with energy storage system(ESS) that the system stabilization can be pursued against the electric power.

Power Factor Correction of Three Phase DCM Converter by 3-stage Operation (3-stage 운전에 의한 3상 DCM컨버터의 입력 역률개선)

  • 최해룡;구영모;김응진;목형수;최규하;김규식;원충연
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.659-662
    • /
    • 1999
  • As utility pollution take a growing interest, ac/dc converter optimizing utility condition has been vigorously studied in decades. In this paper three phase DCM converter is analyzed and equations for average input currents are presented. Also relationships of voltage gain & duty according to angular velocity are presented and variable frequency controller is implemented using reset integrator which is designed in detail. In result power factor and THD characteristics of 3-stage and 4-stage operation ae compared respectively.

  • PDF

Comparative Study of PI, Fuzzy and Fuzzy tuned PI Controllers for Single-Phase AC-DC Three-Level Converter

  • Gnanavadivel, J;Senthil Kumar, N;Yogalakshmi, P
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.78-90
    • /
    • 2017
  • This paper presents the design of closed loop controllers operating a single-phase AC-DC three-level converter for improving power quality at AC mains. Closed loop inhibits outer voltage controller and inner current controller. Simulations of three level converter with three different voltage and current controller combinations such as PI-Hysteresis, Fuzzy-Hysteresis and Fuzzy tuned PI-Hysteresis are carried out in MATLAB/Simulink. Performance parameters such as input power factor and source current total harmonic distortion (THD) are considered for comparison of the three controller combinations. The fuzzy-tuned PI voltage controller with hysteresis current controller combination provides a better result, with a source-current THD of 0.93% and unity power factor without any source side filter for the three level converter. For load variations of 25% to 100%, a THD of less than 5% is obtained with a maximum value of only 1.67%. Finally, the fuzzy-tuned PI voltage with hysteresis controller combination is implemented in a Xilinx Spartan-6 XC6SLX25 FPGA board for experimental validation of power quality enhancement. A prototype 100 W, 0-24-48 V as output converter is considered for the testing of controller performance. A source-current THD of 1.351% is obtained in the experimental study with a power factor near unity. For load variations of 25% to 100%, the THD is found to be less than 5%, with a maximum value of only 2.698% in the experimental setup which matches with the simulation results.

A Study on the Design of Step Up DC-DC Converter and Parallel Operation (승압형 DC-DC 컨버터의 설계 및 병렬운전에 관한 연구)

  • 서광덕;홍찬욱;설승기;박민호
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.6
    • /
    • pp.579-587
    • /
    • 1992
  • This paper is to study on the step-up DC-DC converter for power system which yields output characteristics of low voltage and high current, such as fuel cell generation system. DC-AC-DC scheme is suggested for high ratio of voltage conversion. Three phase MOSFET-SPWM inverter is adopted for intermediate AC conversion and inverter output frequency is chosen at 400[Hz] in order to reduce the size of magnetic circuit and DC filter. Since control strategy which combines voltage controller with current controller in parallel is used, good output performance is obtained both in steady state and in transient state like load variation, not only in single unit operation but also in parallel operation.

Structure and Control of Smart Transformer with Single-Phase Three-Level H-Bridge Cascade Converter for Railway Traction System (Three-Level H-Bridge 컨버터를 이용한 철도차량용 지능형 변압기의 구조 및 제어)

  • Kim, Sungmin;Lee, Seung-Hwan;Kim, Myung-Yong
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.5
    • /
    • pp.617-628
    • /
    • 2016
  • This paper proposes the structure of a smart transformer to improve the performance of the 60Hz main power transformer for rolling stock. The proposed smart transformer is a kind of solid state transformer that consists of semiconductor switching devices and high frequency transformers. This smart transformer would have smaller size than the conventional 60Hz main transformer for rolling stock, making it possible to operate AC electrified track efficiently by power factor control. The proposed structure employs a cascade H-Bridge converter to interface with the high voltage AC single phase grid as the rectifier part. Each H-Bridge converter in the rectifier part is connected by a Dual-Active-Bridge (DAB) converter to generate an isolated low voltage DC output source of the system. Because the AC voltage in the train system is a kind of medium voltage, the number of the modules would be several tens. To control the entire smart transformer, the inner DC voltage of the modules, the AC input current, and the output DC voltage must be controlled instantaneously. In this paper, a control algorithm to operate the proposed structure is suggested and confirmed through computer simulation.