• Title/Summary/Keyword: Three-link mechanism

Search Result 77, Processing Time 0.031 seconds

New Parallel Mechanism for Biped Robots (병렬형 다리 구조를 가진 2족 보행 로봇의 설계 및 제어)

  • Yoon, Jung-Han;Yeon, Je-Sung;Kwon, O-Hung;Park, Jong-Hyeon
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.810-815
    • /
    • 2004
  • In this paper, we propose new parallel mechanism of a 3 dimensional biped robot whose each leg is composed of two 3-dof parallel platforms linked serially. This proposed parallel mechanism is able to move freely in the man-made environment and is applied to various fields, such as medical, welfare, and so on. And a total weight of each leg is expected to be lighter than serial linked leg. One side leg consists of a 3-dof orientation platform and 3-dof asymmetric parallel platform. The former consists of three active linear actuators and seven passive joints, and the latter of two active linear actuators, one active rotational actuator and eight passive joints. Thus, there are two kinds of parallel platforms each chain's elements and active joint's positions are different for the biped robot to move freely like a serial link without the kinematics constraints. The effectiveness and the performance of the proposed parallel mechanism and locomotion trajectory are shown in computer simulations with a 12-DOF parallel biped robot.

  • PDF

Structural Shear Wall Systems with Metal Energy Dissipation Mechanism

  • Li, Guoqiang;Sun, Feifei;Pang, Mengde;Liu, Wenyang;Wang, Haijiang
    • International Journal of High-Rise Buildings
    • /
    • v.5 no.3
    • /
    • pp.195-203
    • /
    • 2016
  • Shear wall structures have been widely used in high-rise buildings during the past decades, mainly due to their good overall performance, large lateral stiffness, and high load-carrying capacity. However, traditional reinforced concrete wall structures are prone to brittle failure under seismic actions. In order to improve the seismic behavior of traditional shear walls, this paper presents three different metal energy-dissipation shear wall systems, including coupled shear wall with energy-dissipating steel link beams, frame with buckling-restrained steel plate shear wall structure, and coupled shear wall with buckling-restrained steel plate shear wall. Constructional details, experimental studies, and calculation analyses are also introduced in this paper.

Dynamic Reverse Route for On-Demand Routing Protocol in MANET

  • Zuhairi, Megat;Zafar, Haseeb;Harle, David
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.5
    • /
    • pp.1354-1372
    • /
    • 2012
  • Route establishment in Mobile Ad Hoc Network (MANET) is the key mechanism to a successful connection between a pair of source and destination nodes. An efficient routing protocol constructs routing path with minimal time, less routing overhead and capable of utilizing all possible link connectivity. In general, most on-demand MANET routing protocols operates over symmetrical and bidirectional routing path, which is infeasible due to the inherent heterogeneous properties of wireless devices. Simulation results show that the presence of unidirectional links on a network severely affect the performance of a routing protocol. In this paper, a robust protocol independent scheme is proposed, which enable immediate rediscovery of alternative route for a path blocked by a unidirectional link. The proposed scheme is efficient; route rediscovery is locally computed, which results in significant minimization of multiple route packets flooding. Nodes may exploit route information of immediate neighbors using the local reply broadcast technique, which then redirect the control packets around the unidirectional links, therefore maintaining the end-to-end bidirectional connection. The proposed scheme along with Ad Hoc On-demand Distance Vector (AODV) and AODV-Blacklist routing protocol is investigated over three types of mobility models. Simulation results show that the proposed scheme is extremely reliable under poor network conditions and the route connectivity can be improved by as much as 75%.

Development of Variable Guide Vane Actuator System for Testing of Aircraft Gas Turbine Engine (항공용 가스터빈 리그시험용 가변정익 구동시스템 개발)

  • Kim, Sun Je;Jeong, Chi Hoon;Ki, Taeseok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.3
    • /
    • pp.9-17
    • /
    • 2019
  • Variable guide vanes(VGVs) that consist of link mechanisms and an actuator system are required for an aircraft gas turbine engine to adjust the incidence angle of stator vanes. In this study, we developed a VGV actuator system for three-stage VGVs with two hydraulic actuators. The requirements for the actuator system were derived by analyzing the link mechanisms and air loads, and a hydraulic power-pack was developed based on these requirements. Through a load test using the actuator test-rig and the application of synchronizing control logic with proper control gains, the actuator system could be developed and verified.

A Three-Degree-of-Freedom Anthropomorphic Oculomotor Simulator

  • Bang Young-Bong;Paik Jamie K.;Shin Bu-Hyun;Lee Choong-Kil
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.2
    • /
    • pp.227-235
    • /
    • 2006
  • For a sophisticated humanoid that explores and learns its environment and interacts with humans, anthropomorphic physical behavior is much desired. The human vision system orients each eye with three-degree-of-freedom (3-DOF) in the directions of horizontal, vertical and torsional axes. Thus, in order to accurately replicate human vision system, it is imperative to have a simulator with 3-DOF end-effector. We present a 3-DOF anthropomorphic oculomotor system that reproduces realistic human eye movements for human-sized humanoid applications. The parallel link architecture of the oculomotor system is sized and designed to match the performance capabilities of the human vision. In this paper, a biologically-inspired mechanical design and the structural kinematics of the prototype are described in detail. The motility of the prototype in each axis of rotation was replicated through computer simulation, while performance tests comparable to human eye movements were recorded.

A Passive Multiple Trailer System with Off-axle Hitching

  • Lee, Jae-Hyoung;Woojin Chung;Kim, Munsnng;Song, Jae-Bok
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.3
    • /
    • pp.289-297
    • /
    • 2004
  • This paper deals with the design and control of passive multiple trailer systems for practical applications. Due to the cost and complexity of the trailer mechanism, passive systems are preferred to active systems in this research. The design and control objective is to minimize the trajectory tracking errors occurring in passive multiple trailers. Three sorts of passive trailer systems, off-hooked, direct-hooked, and three-point, are discussed in this paper. Trajectory tracking performance and stability issues under constant curvature reference trajectories are investigated for these three types. As well, various simulations and experiments have been performed for each type. It is shown that the proposed off-hooked trailer system produces a tracking performance that is superior to the others.

Development of 3 D.O.F parallel robot's simulator for education

  • Yoo, Jae-Myung;Kim, John-Hyeong;Park, Dong-Jin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2290-2295
    • /
    • 2005
  • In this paper, it is developed simulator system of 3 D.O.F parallel robot for educate of expertness. This simulator system is composed of three parts ? 3 D.O.F parallel robot, controller (hardware) and software. First, basic structure of the robot is 3 active rotary actuator that small geared step motor with fixed base. An input-link is connected to this actuator, and this input-link can connect two ball joints. Thus, two couplers can be connected to the input-link as a pair. An end-plate, which is jointed by a ball joint, can be connected to the opposite side of the coupler. A sub-link is produced and installed to the internal spring, and then this sub-link is connected to the upper and bottom side of the coupler in order to prevent a certain bending or deformation of the two couplers. The robot has the maximum diameter of 230 mm, 10 kg of weight (include the table), and maximum height of 300 mm. Hardware for control of the robot is composed of computer, micro controller, pulse generator, and motor driver. The PC used in the controller sends commands to the controller, and transform signals input by the user to the coordinate value of the robot by substituting it into equations of kinematics and inverse kinematics. A controller transfer the coordinate value calculated in the PC to a pulse generator by transforming it into signals. A pulse generator analyzes commands, which include the information received from the micro controller. A motor driver transfer the pulse received from the pulse generator to a step motor, and protects against the over-load of the motor Finally, software is a learning purposed control program, which presents the principle of a robot operation and actual implementation. The benefit of this program is that easy for a novice to use. Developed robot simulator system can be practically applied to understand the principle of parallel mechanism, motors, sensor, and various other parts.

  • PDF

Variable Configuration Tracked Mobile Robot for Demining Operations (지뢰제거작업을 위한 가변 형상 무한궤도형 주행 로봇)

  • Jeong, Hae-Kwan;Kim, Sang-Do;Lee, Cheong-Hee;Kwak, Yoon-Keun
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.804-809
    • /
    • 2004
  • This paper introduces a link-type tracked vehicle which is developed for demining operations. The vehicle consists of three parts - front frame, rear frame and body. The front frame is connected to the rear frame by a rotational passive adaptation mechanism which is a driving mechanism of the vehicle. Additionally, the demining system which is adaptable to mobile robot is developed to clear small Anti-Personnel(AP) mines with inexplosive method. In other words, assembled rakes unearth mines by their opposite rotation to the direction of the robot. Finally, the motions of demining rakes and design parameters of the demining system are analyzed.

  • PDF

Design of Omnidirectional Shock Absorption Mechanism and Stabilizing Dynamic Posture of Miniature Sphere Type Throwing Robot (구형 투척 로봇의 전방향 충격흡수 구조 설계 및 동적 자세 안정화)

  • Jung, Wonsuk;Kim, Young-Keun;Kim, Soohyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.4
    • /
    • pp.281-287
    • /
    • 2016
  • In this paper, we propose a novel compact surveillance throwing robot which has an omnidirectional shock absorption mechanism and an active control part of wheel treads to stabilize the dynamic posture of a miniature sphere type throwing robot. This throwing robot, which weighs 1.14kg and is 110mm in height, is designed in a spherical shape to be easily grabbed for throwing. Also, the omnidirectional shock absorbing aspect is designed using several leaf springs connected with inner and outer wheels. The wheel treads control part consists of a link mechanism. Through the field experiments, this robot is validated to withstand higher than 17Ns of omnidirectional impulse and increase the stabilized max speed three times from 11 rad/s to 33rad/s by increasing wheel treads.

DESIGN AND PERFORMANCE PARAMETERS OF VIBRATING POTATO DIGGERS

  • Kang, Whoa-S.;Kim, Sang-H.;Lee, Gwi-H.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.734-743
    • /
    • 1993
  • The performances of three same type of vibrating potato diggers were estimated by observing the potato separation and material flow on the bottom plate. Four-bar mechanism were adopted for three diggers and pairs of eccentric cams on both sides of driving shaft were used as driving link of the diggers. Each machine was tested with different amplitudes , frequencies, and travels speeds. Blade performance were observed in three categories : Impossible forward travel , acceptable operation, and unsatisfactory potato digging , but good material flow. Three parameters were used to set marginal values that enable the machines operate for potato digging, and the parameters were compared to select best one. Three parameters are λ, $\rho$, and K.λ is the ratio of vibrating speed to travel speed, $\rho$ is the ratio of blade acceleration to travel speed, and K is the ratio of blade acceleration to gravitational acceleration. K value of 2 or more is suggested to be used as design and evalu tion criterion of the vibrating digger.

  • PDF