• Title/Summary/Keyword: Three-link mechanism

Search Result 77, Processing Time 0.025 seconds

Design of Electromagnetic Actuator with Three-Link Mechanism for Air Circuit Breaker (기중 차단기용 전자석 조작기 및 3절 링크 설계)

  • Kim, Rae-Eun;Kwak, Sang-Yeop;Jung, Hyun-Kyo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.7
    • /
    • pp.1321-1328
    • /
    • 2009
  • In this paper, an electromagnetic force driving actuator (EMFA) and three-link mechanism are proposed as a driving mechanism and connection device for low voltage air circuit breaker (ACB). As the result of dynamic characteristic analysis, the actuator and link mechanism are designed from the simulation and manufactured. The magneitc field of the EMFA is analyzed using the finite element method (FEM). The dynamic characteristic analysis with calculation of the circuit equation and kinetical equation is performed by the time difference method (TDM). Also, the result of the analysis is verified through the experiment of the fabrication model. In this paper, the EMFA size is smaller than the actuator for high voltage circuit breaker. Thus, the dynamic characteristic is analyzed with end-winding inductance that is calculated by the same method which is applied on the circle type end-winding of motors. The designed model for 1600 ampere-frame ACB and the three-link mechanism for connecting contact part with actuating part are manufactured. It is confirmed that the three-link mechanism is possible for improving the circuit breaker efficiency and reducing the size of the EMFA. It is proved that the improved 2-D analysis is more accurate than established method.

Structural and Dynamic Analysis of Three-Axis Road Simulator (3축 로드 시뮬레이터의 구조 및 동적 해석)

  • 황성호;김화진;박창수;최경락
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.5
    • /
    • pp.105-111
    • /
    • 2003
  • The three-axis road simulator is the test equipment which can simulate the standardized road conditions for the durability evaluation of automotive components such as suspensions. The road load data are collected and acquired from a vehicle test, and then these data are used to simulate road load conditions by the road simulator which consists of hydraulic actuators, link mechanism and servo controller. The link mechanism must be designed in consideration of the dynamic effect and interference during three axes motions in order to generate accurate motions. In this paper, the structural and kinematic analysis of the link mechanism is performed, and these results can be used for developing the three-axis road simulator. The three-axis road simulator provides considerable savings in cost, development time, and testing risk during developing automotive components.

Improvement of Fatigue-Proof Characteristics of Link Members Under Impact Loadings by a Spring-Actuated Mechanism (스프링구동 메커니즘의 충격 하중을 받는 링크부재의 내피로 특성 향상)

  • 안길영;박상후;이부윤;김원진;오일성
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.4
    • /
    • pp.158-164
    • /
    • 2003
  • The air circuit breaker (ACB) with the spring-actuated mechanism was studied to improve the fatigue-proof characteristics of its link. The low-cycle fatigue fracture phenomenon occurred on the critical link, called h-link, of ACB from the repeated rapid closing and opening operations. To analyze the cause of failure, dynamic FE-analysis on the b-link part of ACB was performed considering tile velocity and acceleration of the links per time as boundary conditions, which were obtained by using ADAMS. Also, the S-N curve obtained by experiments was used to investigate requirement on the fatigue-proof characteristics. Then, to reduce the maximum tensile stress on the h-link, three types of h-link were examined and one of them was selected.

A study on the control-in-the-small characteristics of a planar parallel mechanism (평면형 병렬 메카니즘의 국소적 제어 특성에 관한 연구)

  • Kim, Whee-kuk;Cho, Whang;Kim, Jae-Seoub
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.3
    • /
    • pp.360-371
    • /
    • 1998
  • In this paper, output precision characteristics of a planar 6 degree-of-freedom parallel mechanisms are investigated, where the 6 degree-of-freedom mechanism is formed by adding an additional link along with an actuated joint in each serial subchain of the planar 3 degree-of-freedom parallel mechanism. Kinematic analysis for the parallel mechanism is performed, and its first-order kinematic characteristics are examined via kinematic isotropic index, maximum and minimum input-output velocity transmission ratios of the mechanisms. Based on this analysis, two types of planar 6 degrees-of-freedom parallel manipulators are selected. Then, dynamic characteristics of the two selected planar 6 degree-of-freedom parallel mechanisms, via Frobenius norms of inertia matrix and power modeling array, are investigated to compare the magnitudes of required control efforts of both three large actuators and three small actuators when the link lengths of three additional links are changed. It can be concluded from the analysis results that each of these two planar 6 degrees-of-freedom parallel mechanisms has an excellent control-in-the-small characteristics and therefore, it can be very effectively employed as a high-precision macro-micro manipulator when both its link lengths and locations of small and large actuators are properly chosen.

  • PDF

A Three-way Handshaking Access Mechanism for Point to Multipoint In-band Full-duplex Wireless Networks

  • Zuo, Haiwei;Sun, Yanjing;Lin, Changlin;Li, Song;Xu, Hongli;Tan, Zefu;Wang, Yanfen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.7
    • /
    • pp.3131-3149
    • /
    • 2016
  • In-band Full-duplex (IBFD) wireless communication allows improved throughput for wireless networks. The current Half-duplex (HD) medium access mechanism Request to Send/Clear to Send (RTS/CTS) has been directly applied to IBFD wireless networks. However, this is only able to support a symmetric dual link, and does not provide the full advantages of IBFD. To increase network throughput in a superior way to the HD mechanism, a novel three-way handshaking access mechanism RTS/SRTS (Second Request to Send)/CTS is proposed for point to multipoint (PMP) IBFD wireless networks, which can support both symmetric dual link and asymmetric dual link communication. In this approach, IBFD wireless communication only requires one channel access for two-way simultaneous packet transmissions. We first describe the RTS/SRTS/CTS mechanism and the symmetric/asymmetric dual link transmission procedure and then provide a theoretical analysis of network throughput and delay using a Markov model. Using simulations, we demonstrate that the RTS/SRTS/CTS access mechanism shows improved performance relative to that of the RTS/CTS HD access mechanism.

A Study on the Spring-Link Mechanism to Improve the Shock-proof Characteristics of Link (스프링 링크 메커니즘에서 부재의 내충격성 향상을 위한 연구)

  • 박상후;이부윤;안길영;오일성;윤영관;김대균
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.777-781
    • /
    • 1997
  • One of the spring-link mechanisms, the air circuit breaker(ACB), was studied to improve the shock-proof characteristics of it. The low-cycle fatigue fracture phenomenon was occurred on the critical link, called h-link, of ACB for the repeated rapid closing and opening operations. To analyze the cause of failure, dynamic FE-analysis on the h-link part of ACB was accomplished with considered the velocity and acceleration of the links per time as boundary conditions, which were obtained by using ADAMS. Then, to reduce the maximum tensile stress on the h-link, three types of h-link were suggested and one of them was selected. Fmm this study, we suggested the process of analysis on the high-speed motion behavior part related low-cycle fatigue fractures.

  • PDF

Optimal Synthesis of Steering Mechanisms Considering Transmission Angles (전달각을 고려한 조향기구의 최적합성)

  • Park, Jong-Keun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.1
    • /
    • pp.68-75
    • /
    • 2012
  • In this study, the optimal synthesis of planar steering mechanisms for vehicles is studied. The author minimized the steering error between two front wheels subject to the constraints of transmission angles. Nonlinear programming methods such as BFGS method and golden section search method are used for this optimization. As numerical examples, Ackermann's steering mechanism, 6-link and 10-link planar mechanism are adopted to check the usefulness of this method. Consequently, among the three optimized mechanisms, 10-link planar one conducts far more accurate performance subject to tight constraints of transmission angles.

Compact Robotic Arm to Assist with Eating using a Closed Link Mechanism (크로스 링크 기구를 적용한 소형 식사지원 로봇)

  • 강철웅;임종환
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.3
    • /
    • pp.202-209
    • /
    • 2003
  • We succeeded to build a cost effective assistance robotic arm with a compact and lightweight body. The robotic arm has three joints, and the tip of robotic arm to install tools consists of a closed link mechanism, which consisted of two actuators and several links. The robotic arm has been made possible by the use of actuators typically used in radio control devices. The controller of the robotic arm consists of a single chip PIC only. The robotic arm has a friendly user interface, as the operators are aged and disabled in most cases. The operator can manipulate the robotic arm by voice commands or by pressing a push button. The robotic arm has been successfully prototyped and tested on an elderly patient to assist with eating. The results of field test were satisfactory.

Development of Adaptive RCC Mechanism Using Double-Actuator Units (여자유도 액츄에이터를 이용한 능동RCC 장치의 개발)

  • Lim, Hyok-Jin;Kim, Byeong-Sang;Kang, Byung-Duk;Song, Jae-Bok;Park, Shin-Suk
    • The Journal of Korea Robotics Society
    • /
    • v.2 no.2
    • /
    • pp.168-177
    • /
    • 2007
  • In a number of fields, robots are being used for two purposes: efficiency and safety. Most robots, however, have single-actuator mechanism for each joint, where the tasks are performed with high stiffness. High stiffness causes undesired problems to the environment and robots. This study proposes redundant actuator mechanism as an alternative idea to cope with these problems. In this paper, Double-Actuator Unit (DAU) is implemented at each joint for applications of multi-link manipulators. The DAU is composed of two motors: the positioning actuator and the stiffness modulator, which enables independent control of positioning and compliance. A three-link manipulator with DAUs enables adaptive control of RCC. By modulating the joint stiffness of the manipulator and controlling the position of RCC, we can significantly reduce contact force during assembly tasks and surgical procedures.

  • PDF

Criterion on Enclosed Die Forging with a Double-Action Link-Type Hydraulic Die Set (복동링크유압식 다이세트를 이용한 폐쇄단조의 폐쇄단조조건)

  • Jun, B.Y.;Park, R.H.;Eom, J.G.;Joun, M.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.391-394
    • /
    • 2006
  • In this paper, a criterion on enclosed die forging with a double action link type hydraulic die set is presented. Operational principle of the die set in enclosed die forging is introduced with emphasis on force transfer from the press and the hydraulic system to the material through links, die components and punches. Force transfer mechanism is examined and three different modes are introduced. Requirements on force equilibrium are applied to the three force transfer modes and a criterion on enclosed die forging with a double action link type hydraulic die set is drawn. The criterion is discussed to minimize forming load.

  • PDF