• 제목/요약/키워드: Three-dimensional visualization

검색결과 388건 처리시간 0.026초

Fashion Design Expression of Wassily Kandinsky's Paintings -Focus on Music Visualization -

  • Kim, Sung-Soo;Kim, Young-Sam
    • 복식
    • /
    • 제66권5호
    • /
    • pp.16-32
    • /
    • 2016
  • This study examines music visualization characteristics appearing in Giorgio Armani's S/S 2000 Collection and Genny's F/W 2000 Collection, which elicited and reinterpreted the characteristics through an analysis of Kandinsky's paintings. Study results are as follows. First, music visualization characteristics were extracted through an analysis of Kandinsky's works to examine music visualization that appears in contemporary fashion. Further analysis of Kandinsky's works were done in regards to music visualization (Impression, Improvisation, and Composition), and music visualization characteristics were categorized into 'spatial element', 'mobility', and 'overlap'. Second, the analysis of contemporary fashion with a spatial component showed that space was often clothed through color contrasts that highlighted concise and playful effects. Emphasis on line and three-dimensional effects were shown by overlapping lines and costume pleats with exposure expressed by semiotic forms and fabric character4istics. Third, the analysis of clothes that express mobility shows that they commonly express mobility through free color arrangements and a shading of colors with playfulness. The effects of emphasis, uniformity, and exposure were shown through the gloss and transformation of fabric that emphasized fabric characteristics; in addition, the effect of simplicity, three-dimensionality, and uniformity were expressed by adopting the forms of geometric shapes. Fourth, the analysis of clothes that manifest the overlap showed a predominant overlapping of colors and fabric. The esthetic effects of playfulness and exposure were emphasized through colors, shapes, and lines.

딥 러닝 기반의 영상분할 알고리즘을 이용한 의료영상 3차원 시각화에 관한 연구 (Three-Dimensional Visualization of Medical Image using Image Segmentation Algorithm based on Deep Learning)

  • 임상헌;김영재;김광기
    • 한국멀티미디어학회논문지
    • /
    • 제23권3호
    • /
    • pp.468-475
    • /
    • 2020
  • In this paper, we proposed a three-dimensional visualization system for medical images in augmented reality based on deep learning. In the proposed system, the artificial neural network model performed fully automatic segmentation of the region of lung and pulmonary nodule from chest CT images. After applying the three-dimensional volume rendering method to the segmented images, it was visualized in augmented reality devices. As a result of the experiment, when nodules were present in the region of lung, it could be easily distinguished with the naked eye. Also, the location and shape of the lesions were intuitively confirmed. The evaluation was accomplished by comparing automated segmentation results of the test dataset to the manual segmented image. Through the evaluation of the segmentation model, we obtained the region of lung DSC (Dice Similarity Coefficient) of 98.77%, precision of 98.45%, recall of 99.10%. And the region of pulmonary nodule DSC of 91.88%, precision of 93.05%, recall of 90.94%. If this proposed system will be applied in medical fields such as medical practice and medical education, it is expected that it can contribute to custom organ modeling, lesion analysis, and surgical education and training of patients.

Fusion technology in applied geophysics

  • Matsuoka Toshifumi
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 2003년도 Proceedings of the international symposium on the fusion technology
    • /
    • pp.21-26
    • /
    • 2003
  • The visualization of three dimensional geophysical data is forcing a revolution in the way of working, and allowing the discovery and production of hydrocarbons at much lower costs than previously thought possible. There are many aspects of this revolution that are behind the scenes, such as the database structure, the storage and retrieval of data, and the exchange of data among programs. Also the user had changes where the interpreter (or manager, or processor) actually looks at and somehow interacts with the data. The use of opacity in volume rendering, and how its judicious application can assist in imaging geologic features in three dimensional seismic data. This revolutionary development of new technology is based on the philosophy of synergy of inter-disciplines of the oil industry. Group interaction fostered by large room visualization environments enables the integration of disciplines we strive for, by putting the petrophysicist, geologist, geophysicist, and reservoir engineer in one place, looking at one image together, without jargon or geography separating them. All these tools developed in the oil industry can be applied into the civil engineering industry also such as the prior geological and geophysical survey of the constructions. Many examples will show how three dimensional geophysical technology might make a revolution in the oil business industry now and in future. This change can be considered as a fusion process at data, information, and knowledge levels.

  • PDF

DNN과 Decoder 모델 구축을 통한 생체모방 3차원 파형 익형의 유체역학적 특성 예측 (Establishment of DNN and Decoder models to predict fluid dynamic characteristics of biomimetic three-dimensional wavy wings)

  • 김민기;윤현식;서장훈;김민일
    • 한국가시화정보학회지
    • /
    • 제22권1호
    • /
    • pp.49-60
    • /
    • 2024
  • The purpose of this study establishes the deep neural network (DNN) and Decoder models to predict the flow and thermal fields of three-dimensional wavy wings as a passive flow control. The wide ranges of the wavy geometric parameters of wave amplitude and wave number are considered for the various the angles of attack and the aspect ratios of a wing. The huge dataset for training and test of the deep learning models are generated using computational fluid dynamics (CFD). The DNN and Decoder models exhibit quantitatively accurate predictions for aerodynamic coefficients and Nusselt numbers, also qualitative pressure, limiting streamlines, and Nusselt number distributions on the surface. Particularly, Decoder model regenerates the important flow features of tiny vortices in the valleys, which makes a delay of the stall. Also, the spiral vortical formation is realized by the Decoder model, which enhances the lift.

협동학습활동이 유아 기하 학습에 미치는 영향 (The Effects of Cooperative Learning on Children's Understanding of Geometry)

  • 권영례;이경진;신옥자
    • 아동학회지
    • /
    • 제32권2호
    • /
    • pp.71-85
    • /
    • 2011
  • This study was carried out in order to better understand how cooperative learning effects the geometric understanding of young children. The geometry tasks used in the study included the geometric relationship between two dimensional shapes and three dimensional shapes, coordination, symmetry and transformation visualization and spacial reasoning. The subjects were composed of children aged five years and were taken from two kindergartens in a relatively new city close to Seoul. The experimental group of children the comparative learning in geometry. The comparative group of children were enrolled in a kindergarten that uses an the intergrated curriculum. The results indicated that cooperative learning impacted positively on the children's understanding of geometry. The specific results are as follows : The scores that the experimental acquired were higher in terms of p < .001 level. than the scores of the comparative group studying the geometric relationships between two dimensional shapes and three dimensional shapes, coordination, symmetry and transformation visualization & spacial reasoning.

Location-aware visualization of VRML models in indoor location tracking system

  • Yang, Chi-Shian;Chung, Wan-Young
    • 센서학회지
    • /
    • 제16권3호
    • /
    • pp.220-228
    • /
    • 2007
  • For many applications particularly in navigation system, a three-dimensional representation improves the usability of information. This paper introduces 3D Graphical User Interface (GUI) of indoor location tracking system, 3D Navigation View. The application provides users a 3D visualization of the indoor environments they are exploring, synchronized with the physical world through spatial information obtained from indoor location tracking system. It adopts widely used Virtual Reality Modeling Language (VRML) to construct, represent, distribute and render 3D world of indoor environments over Internet. Java, an all-purpose programming language is integrated to comprehend spatial information received from indoor location tracking system. Both are connected through an interface called External Authoring Interface (EAI) provided by VRML. Via EAI, Java is given the authority to access and manipulate the 3D objects inside the 3D world that facilitates the indication of user's position and viewpoint in the constructed virtual indoor environments periodically.

액체의 표면 특성을 고려한 3차원 캐버티 내부의 스톡스 유동 특성 연구 (Study on the Stokes' Flow within a Three-Dimensional Cavity Considering Surface Characteristics)

  • 허효원;정원혁;서용권
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.382-386
    • /
    • 2011
  • In this study, a CFD code is developed to perform simulation of the surface and internal flow of a three-dimensional rectangular cavity driven by an external gas flow. Investigated in this study are surface characteristic such as surface tension, surface dilational viscosity(or surface elasticity), and surface viscosity. Visualization of the surface of water is performed to compare with the numerical results obtained with the developed in-house code. We have found that the surface flow is very sensitive to the surface tension and other configurations. The surface flow velocity obtained from the numerical solution is lower than the experimental result.

  • PDF

3차원 해상상태 생성을 위한 가시화 시뮬레이션 (On Visualization Simulation for Generation of Three Dimensional Sea State)

  • 손경호;배준영;김용민
    • 한국항해항만학회지
    • /
    • 제26권4호
    • /
    • pp.449-453
    • /
    • 2002
  • 최근에 한국해양대학교에서는 선박조종시뮬레이터를 개발했다. 이에 따라 시뮬레이터에 해상상태를 적용하기 위해 노력중이다. 이 논문에서는 해상에서의 파의 움직임을 표현하는 수학모델과 OpenGL API를 이용하여 해상상태의 가시화 시뮬레이션 및 계산 결과의 시뮬레이터에 적용가능에 대해 논한다.

3D Visualization for Extremely Dark Scenes Using Merging Reconstruction and Maximum Likelihood Estimation

  • Lee, Jaehoon;Cho, Myungjin;Lee, Min-Chul
    • Journal of information and communication convergence engineering
    • /
    • 제19권2호
    • /
    • pp.102-107
    • /
    • 2021
  • In this paper, we propose a new three-dimensional (3D) photon-counting integral imaging reconstruction method using a merging reconstruction process and maximum likelihood estimation (MLE). The conventional 3D photon-counting reconstruction method extracts photons from elemental images using a Poisson random process and estimates the scene using statistical methods such as MLE. However, it can reduce the photon levels because of an average overlapping calculation. Thus, it may not visualize 3D objects in severely low light environments. In addition, it may not generate high-quality reconstructed 3D images when the number of elemental images is insufficient. To solve these problems, we propose a new 3D photon-counting merging reconstruction method using MLE. It can visualize 3D objects without photon-level loss through a proposed overlapping calculation during the reconstruction process. We confirmed the image quality of our proposed method by performing optical experiments.

홀로그래피 간섭 토모그래피를 이용한 3 차원 자연대류 해석 (Analysis of Three-Dimensional Natural Convection Using a Holographic Interferometric Tomography)

  • 심동식;이수만;강보선;차동진;주원종
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.497-502
    • /
    • 2001
  • Three-dimensional natural convection from a discrete flush-mounted circular heat source on the bottom of a cubic enclosure was studied by using a holographic interferometric tomography. The heat source was located at the off-center of the bottom plate so that three-dimensional temperature field can be achieved. A set of multidirectional holographic interferogram was recorded by employing a double-reference beam, double-exposure holographic technique in order to eventually reconstruct the temperature fields. The recorded interferometric data appear good enough to be further processed to extract optical pathlength data from them and finally reconstruct the temperature fields. A complete analysis of the temperature fields including the field reconstructions and comparison with thermocouple measurements is underway and will be reported shortly.

  • PDF