• Title/Summary/Keyword: Three-dimensional visualization

Search Result 387, Processing Time 0.023 seconds

Fast Garment Drape Simulation Using Geometrically Constrained Particle System

  • Kim, Sungmin;Park, Chang-Kyu
    • Fibers and Polymers
    • /
    • v.4 no.4
    • /
    • pp.169-175
    • /
    • 2003
  • A simulation system for versatile garment drape has been developed. Using this system, the shape of a garment can be simulated in consideration of fabric physical properties as well as the interaction between fabrics and other objects. Each fabric piece in a garment is modeled using a geometrically constrained particle system and its behavior is calculated from an implicit numerical integration algorithm in a relatively short time. The system consists of three modules including a preprocessor for the preparation of fabric patterns and external objects, a postprocessor for the results of three-dimensional visualization, and a drape simulation engine. It can be used for the design process of textile goods, garments, furniture, or upholsteries.

Three-dimensional vortex structure near a corner of a translating plate (병진운동하는 평판의 모서리에서의 3차원 와류 구조 가시화)

  • Kim, Daegyoum
    • Journal of the Korean Society of Visualization
    • /
    • v.13 no.1
    • /
    • pp.21-25
    • /
    • 2015
  • Three-dimensional vortex structures in the corner region of translating normal plates are visualized experimentally with defocusing digital particle image velocimetry. Vortex formation processes for three plates with corner angle $60^{\circ}$, $90^{\circ}$, and $120^{\circ}$ are compared in order to study the effect of corner shape on vortex formation. In all cases, the self-induction of the starting vortex and its interaction with the potential flow induced by the moving plate cause the vortex to change its form dynamically after the plate starts to translate. While the vortex near a corner follows the plate in the low corner angle of $60^{\circ}$, the vortex separates early from the plate and its forward motion becomes slow in the high corner angle of $120^{\circ}$. It is also found that the starting vortex can transport inward at the corner, which depends on the corner angle.

Tomographic Reconstruction of a Three-Dimensional Flow Field with Limited Interferometric Data

  • Cha, Dong-Jin
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.8 no.2
    • /
    • pp.11-22
    • /
    • 2000
  • Holographic interferometric tomography can provide reconstruction of instantaneous three-dimensional gross flow fields. The technique however confronts ill-posed reconstruction problems in practical applications. Experimental data are usually limited in projection and angular scanning when a field is captured instantaneously or under the obstruction of test models and test section enclosures. An algorithm, based on a series expansion method, has been developed to improve the reconstruction under the ill-posed conditions. A three-dimensional natural convection flow around two interacting isothermal cubes is experimentally investigated. The flow can provide a challenging reconstruction problem and lend itself to accurate numerical solution for comparison. The refractive index fields at two horizontal sections of the thermal plume with and without an opaque object are reconstructed at a limited view angle of 80$\circ$. The experimental reconstructions are then compared with those from numerical calculation and thermocouple thermometry. It confirms that the technique is applicable to reconstruction of reasonably complex, three-dimensional flow fields.

  • PDF

Visualization of rupturing of rotating films (회전 원판 위 액막 유동 찢김 가시화)

  • Dong Ju Kim;Daegyoum Kim
    • Journal of the Korean Society of Visualization
    • /
    • v.22 no.1
    • /
    • pp.28-33
    • /
    • 2024
  • We visualized the rupturing of liquid films flowing over a disk rotating with large angular velocity. A setup of high speed imaging for liquid flows on dark and reflective surfaces are suggested. From the result, rivulet structures are revealed to be strongly governed by three-dimensional surface structures developed in the film flow. Additionally, unique flow structures including the rivulet sliding and internal meandering are investigated. Generation mechanism of such structures are discussed in terms of the dynamic contact angle theory.

Analysis of Big Data Visualization Technology Based on Patent Analysis (특허분석을 통한 빅 데이터의 시각화 기술 분석)

  • Rho, Seungmin;Choi, YongSoo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.7
    • /
    • pp.149-154
    • /
    • 2014
  • Modern data computing developments have led to big improvements in graphic capabilities and there are many new possibilities for data displays. The visualization has proven effective for not only presenting essential information in vast amounts of data but also driving complex analyses. Big-data analytics and discovery present new research opportunities to the computer graphics and visualization community. In this paper, we discuss the patent analysis of big data visualization technology development in major countries. Especially, we analyzed 160 patent applications and registered patents in four countries on November 2012. According to the result of analysis provided by this paper, the text clustering analysis and 2D visualization are important and urgent development is needed to be oriented. In particular, due to the increase of use of smart devices and social networks in domestic, the development of three-dimensional visualization for Big Data can be seen very urgent.

Interactive 3D Visualization of Ceilometer Data (운고계 관측자료의 대화형 3차원 시각화)

  • Lee, Junhyeok;Ha, Wan Soo;Kim, Yong-Hyuk;Lee, Kang Hoon
    • Journal of the Korea Computer Graphics Society
    • /
    • v.24 no.2
    • /
    • pp.21-28
    • /
    • 2018
  • We present interactive methods for visualizing the cloud height data and the backscatter data collected from ceilometers in the three-dimensional virtual space. Because ceilometer data is high-dimensional, large-size data associated with both spatial and temporal information, it is highly improbable to exhibit the whole aspects of ceilometer data simply with static, two-dimensional images. Based on the three-dimensional rendering technology, our visualization methods allow the user to observe both the global variations and the local features of the three-dimensional representations of ceilometer data from various angles by interactively manipulating the timing and the view as desired. The cloud height data, coupled with the terrain data, is visualized as a realistic cloud animation in which many clouds are formed and dissipated over the terrain. The backscatter data is visualized as a three-dimensional terrain which effectively represents how the amount of backscatter changes according to the time and the altitude. Our system facilitates the multivariate analysis of ceilometer data by enabling the user to select the date to be examined, the level-of-detail of the terrain, and the additional data such as the planetary boundary layer height. We demonstrate the usefulness of our methods through various experiments with real ceilometer data collected from 93 sites scattered over the country.

Secure Transmission for Interactive Three-Dimensional Visualization System

  • Yun, H.Y.;Yoo, Sun Kook
    • Journal of International Society for Simulation Surgery
    • /
    • v.4 no.1
    • /
    • pp.17-20
    • /
    • 2017
  • Purpose Interactive 3D visualization system through remote data transmission over heterogeneous network is growing due to the improvement of internet based real time streaming technology. Materials and Methods The current internet's IP layer has several weaknesses against IP spoofing or IP sniffing type of network attacks since it was developed for reliable packet exchange. In order to compensate the security issues with normal IP layer, we designed a remote medical visualization system, based on Virtual Private Network. Results Particularly in hospital, if there are many surgeons that need to receive the streaming information, too much load on the gateway can results in deficit of processing power and cause the delay. Conclusion End to end security through the network method would be required.

Study on visualization of vortex flow on hydrofoils (수중익에서 발생하는 보텍스 유동 가시화 연구)

  • Hong, Ji-Woo;Ahn, Byoung-Kwon
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.2
    • /
    • pp.48-55
    • /
    • 2021
  • In order to design a propeller with high efficiency and excellent cavitation performance, theoretical and experimental studies on the cavitation and noise characteristics according to the blade section shape are essential. In general, sheet cavitation, bubble cavitation, and cloud cavitation are the main causes of hull vibration and propeller surface erosion. However vortex cavitation, which has the greatest influence on the noise level because the fastest CIS in ship propeller, has been researched for a long time and studies have been conducted recently to control it. In this experiment, the development process of cavitation was measured by using three dimensional wings with two different wing section and wing tip shapes, and the noise level at that time was evaluated. In addition, we evaluated the relationship between cavitation inception and hydrodynamic force using three component load cell and we measured the velocity field of wing wake using LDV.

Effective Risk Level Assessment Using Three-Dimensional Vector Visualization (3차원 벡터 시각화를 활용한 효과적인 위험 수준 평가)

  • Lee, Ju-young;Cho, In-hyun;Lee, Jae-hee;Lee, Kyung-ho
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.25 no.6
    • /
    • pp.1595-1606
    • /
    • 2015
  • Risk analysis is utilized in devising measures to manage information security risk to an acceptable level. In this risk management decision-making, the visualization of risk is important. However, the pre-existing risk visualization method is limited in visualizing risk factors three-dimensionally. In this paper, we propose an improved risk visualization method which can facilitate the identification of risk from the perspective of confidentiality, integrity, and availability respectively or synthetically. The proposed method is applied to an enterprise's risk analysis in order to verify how effective it is. We argue that through the proposed method risk levels can be expressed three-dimensionally, which can be used effectively for information security decision-making process for internal controls.