• Title/Summary/Keyword: Three-dimensional virtual models

Search Result 92, Processing Time 0.026 seconds

Integration of Laser Scanning and Three-dimensional Models in the Legal Process Following an Industrial Accident

  • Eyre, Matthew;Foster, Patrick;Speake, Georgina;Coggan, John
    • Safety and Health at Work
    • /
    • v.8 no.3
    • /
    • pp.306-314
    • /
    • 2017
  • Background: In order to obtain a deeper understanding of an incident, it needs to be investigated to "peel back the layers" and examine both immediate and underlying failures that contributed to the event itself. One of the key elements of an effective accident investigation is recording the scene for future reference. In recent years, however, there have been major advances in survey technology, which have provided the ability to capture scenes in three dimension to an unprecedented level of detail, using laser scanners. Methods: A case study involving a fatal incident was surveyed using three-dimensional laser scanning, and subsequently recreated through virtual and physical models. The created models were then utilized in both accident investigation and legal process, to explore the technologies used in this setting. Results: Benefits include explanation of the event and environment, incident reconstruction, preservation of evidence, reducing the need for site visits, and testing of theories. Drawbacks include limited technology within courtrooms, confusion caused by models, cost, and personal interpretation and acceptance in the data. Conclusion: Laser scanning surveys can be of considerable use in jury trials, for example, in case the location supports the use of a high-definition survey, or an object has to be altered after the accident and it has a specific influence on the case and needs to be recorded. However, consideration has to be made in its application and to ensure a fair trial, with emphasis being placed on the facts of the case and personal interpretation controlled.

Three-dimensional analysis of tooth movement in Class II malocclusion treatment using arch wire with continuous tip-back bends and intermaxillary elastics

  • Lee, Ji-Yea;Choi, Sung-Kwon;Kwon, Tae-Hoon;Kang, Kyung-Hwa;Kim, Sang-Cheol
    • The korean journal of orthodontics
    • /
    • v.49 no.6
    • /
    • pp.349-359
    • /
    • 2019
  • Objective: The aim of this study was to analyze three-dimensional (3D) changes in maxillary dentition in Class II malocclusion treatment using arch wire with continuous tip-back bends or compensating curve, together with intermaxillary elastics by superimposing 3D virtual models. Methods: The subjects were 20 patients (2 men and 18 women; mean age 20 years 7 months ${\pm}$ 3 years 9 months) with Class II malocclusion treated using $0.016{\times}0.022-inch$ multiloop edgewise arch wire with continuous tip-back bends or titanium molybdenum alloy ideal arch wire with compensating curve, together with intermaxillary elastics. Linear and angular measurements were performed to investigate maxillary teeth displacement by superimposing pre- and post-treatment 3D virtual models using Rapidform 2006 and analyzing the results using paired t-tests. Results: There were posterior displacement of maxillary teeth (p < 0.01) with distal crown tipping of canine, second premolar and first molar (p < 0.05), expansion of maxillary arch (p < 0.05) with buccoversion of second premolar and first molar (p < 0.01), and distal-in rotation of first molar (p < 0.01). Reduced angular difference between anterior and posterior occlusal planes (p < 0.001), with extrusion of anterior teeth (p < 0.05) and intrusion of second premolar and first molar (p < 0.001) was observed. Conclusions: Class II treatment using an arch wire with continuous tip-back bends or a compensating curve, together with intermaxillary elastics, could retract and expand maxillary dentition, and reduce occlusal curvature. These results will help clinicians in understanding the mechanism of this Class II treatment.

Mixed-reality simulation for orthognathic surgery

  • Fushima, Kenji;Kobayashi, Masaru
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.38
    • /
    • pp.13.1-13.12
    • /
    • 2016
  • Background: Mandibular motion tracking system (ManMoS) has been developed for orthognathic surgery. This article aimed to introduce the ManMoS and to examine the accuracy of this system. Methods: Skeletal and dental models are reconstructed in a virtual space from the DICOM data of three-dimensional computed tomography (3D-CT) recording and the STL data of 3D scanning, respectively. The ManMoS uniquely integrates the virtual dento-skeletal model with the real motion of the dental cast mounted on the simulator, using the reference splint. Positional change of the dental cast is tracked by using the 3D motion tracking equipment and reflects on the jaw position of the virtual model in real time, generating the mixed-reality surgical simulation. ManMoS was applied for two clinical cases having a facial asymmetry. In order to assess the accuracy of the ManMoS, the positional change of the lower dental arch was compared between the virtual and real models. Results: With the measurement data of the real lower dental cast as a reference, measurement error for the whole simulation system was less than 0.32 mm. In ManMoS, the skeletal and dental asymmetries were adequately diagnosed in three dimensions. Jaw repositioning was simulated with priority given to the skeletal correction rather than the occlusal correction. In two cases, facial asymmetry was successfully improved while a normal occlusal relationship was reconstructed. Positional change measured in the virtual model did not differ significantly from that in the real model. Conclusions: It was suggested that the accuracy of the ManMoS was good enough for a clinical use. This surgical simulation system appears to meet clinical demands well and is an important facilitator of communication between orthodontists and surgeons.

3-D Sound-Field Creation Implementing the Virtual Reality Ship Handling Simulator(I): HRTF Modeling (가상 현실 선박 조종 시뮬레이터 구현을 위한 3차원 음장생성(I) : 머리전달함수 모델링)

  • 임정빈
    • Journal of the Korean Institute of Navigation
    • /
    • v.22 no.3
    • /
    • pp.17-25
    • /
    • 1998
  • This paper describes elemental technologies for the creation of three-dimensional(3-D) sound-field to implement the next-generation Ship Handling Simulator with human -computer interaction, known as Virtual Reality. In the virtual reality system, Head-Related Transfer Functions(HRTF's) are used to generate 3-D sound environmental context. Where, the HRTF's are impulse response characterizing the acoustical transformation in a space. This work is divided into two parts, the part Ⅰis mainly for the model constructions of the HRTF's, the part Ⅱis for the control of 3-D sound-field by using the HRTF's . In this paper, as first part, we search for the theory to formulate models of the HRTF's which reduce the dimensionalityof the formulation without loss of any directional information . Using model HRTF's we report results from psychophysical tests used to asses the validity of the proposed modleing method.

  • PDF

A Design Procedure for Safety Simulation System Using Virtual Reality

  • Jae-seug Ki
    • Proceedings of the Safety Management and Science Conference
    • /
    • 1999.11a
    • /
    • pp.381-389
    • /
    • 1999
  • One of the objectives of any task design is to provide a safe and helpful workplace for the employees. The safety and health module may include means for confronting the design with safety and health regulations and standards as well as tools for obstacles and collisions detection (such as error models and simulators). Virtual Reality is a leading edge technology which has only very recently become available on platforms and at prices accessible to the majority of simulation engineers. The design of an automated manufacturing system is a complicated, multidisciplinary task that requires involvement of several specialists. In this paper, a design procedure that facilitates the safety and ergonomic considerations of an automated manufacturing system are described. The procedure consists of the following major steps: Data collection and analysis of the data, creation of a three-dimensional simulation model of the work environment, simulation for safety analysis and risk assessment, development of safety solutions, selection of the preferred solutions, implementation of the selected solutions, reporting, and training When improving the safety of an existing system the three-dimensional simulation model helps the designer to perceive the work from operators point of view objectively and safely without the exposure to hazards of the actual system.

  • PDF

A study on the Analysis of 3D Scanning of Knit Stitches and Modeling System - Jersey, Rib, and Cable Stitches -

  • Choi, Kyoung-Me;Kim, Jong-Jun;Song, Na-Gun
    • Journal of Fashion Business
    • /
    • v.16 no.3
    • /
    • pp.125-135
    • /
    • 2012
  • Since knitted textile products mostly do not require long span of time from the conception to the final products, they have lead the fashion trends during the recent decades. Developments in the textile engineering industries, and computer software and hardware industries have made the 3D virtual clothing software system easily accessible by the fashion/textile industry personnel. The simulated models of apparel products using the state-of-the-art virtual clothing systems are, however, not the replica of real-world garments. Moreover, the garments do not maintain fixed shapes during wearing. Deformations at low external stress lead to difficulties in predicting the behavior of the knitted garments. Therefore, there is a need to compare the differences in appearances, textures, or other related properties between simulated fabrics and actual fabrics. Three knit stitches including jersey, rib, and cable stitches are examined in this study. The differences between fluffy thick yarns and thin yarns are also compared using 3D scanning and surface reconstruction. Obtained three-dimensional data regarding the reconstructed knit specimens would help to build a data base for estimating the behavior of the 3D models of the knitted garments.

Numerical evaluation of the effect of multiple roughness changes

  • Abdi, Daniel S.;Bitsuamlak, Girma T.
    • Wind and Structures
    • /
    • v.19 no.6
    • /
    • pp.585-601
    • /
    • 2014
  • The effect of multiple roughness changes close to a building site was examined through three dimensional computational fluid dynamics (CFD) simulations conducted in a virtual boundary layer wind tunnel (V-BLWT). The results obtained were compared with existing wind speed models, namely ESDU-82026 and Wang and Stathopoulos (WS) model. The latter was verified by wind tunnel tests of sixty nine cases of multiple roughness patches, and also with a simplified 2D numerical model. This work extends that numerical study to three dimensions and also models roughness elements explicitly. The current numerical study shows better agreement with the WS model, that has shown better agreements with BLWT tests, than the ESDU model. This is in contrast to previous results of Wang and Stathopoulos, who concluded that CFD shows better agreement with the ESDU model. Many cases were simulated in a V-BLWT that has same dimensions as BLWT used in the original experiment and also in a reduced symmetrical version (S-BLWT) that takes advantage of regular arrangement of roughness blocks. The S-BLWT gives results almost identical to V-BLWT simulations, while achieving significant reduction on computational time and resources.

Development of Three-dimensional CAD System for Die Design for Automotive Body Panels (자동차 프레스 금형 설계를 위한 3차원 CAD 시스템의 개발)

  • Lee, Sang-Hwa;Ryu, Seung-Woo;Lee, Sang-Hun
    • Korean Journal of Computational Design and Engineering
    • /
    • v.12 no.1
    • /
    • pp.39-49
    • /
    • 2007
  • Recently three-dimensional (3-D) die design and production process has been widely introduced into the tooling shops of automotive manufacturers to reduce time-to-production of brand-new automobiles. 3-D solid models created in CAD systems are used not only for various simulations for design verification, but also for NC tool path generation to machine dies and their Styrofoam patterns. However, a lot of time and cost will be required to build solid models for dies if designers use only the generalized modeling capabilities of commercial 3-D CAD systems. To solve this problem, it is necessary to customize 3-D CAD system for the specific die design and manufacturing process. This paper describes a dedicated 3-D CAD system based on Unigraphics for die design for automotive body panels. The system provides not only 3-D design capabilities, but also standard part libraries, to enhance design productivity. The design process modeling technology has been introduced to facilitate redesign of the die for the modified panel. By introducing this system, dies can be designed more rapidly in the 3-D space, and their solid data can be directly transferred to CAM tools for NC tool path generation and simulation tools for virtual manufacturing.

Development of a Three-Dimensional CAD System for Design of Drawing Dies for Automotive Panels (자동차 패널 드로잉 금형 설계를 위한 3 차원 CAD 시스템의 개발)

  • Lee Sang-Hwa;Lee Sang-Hun
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1424-1428
    • /
    • 2005
  • This paper describes a dedicated three-dimensional CAD system for design of drawing dies for automotive body panels. Since solid die models are useful not only for simulations for design verification, but also for NC tool path generation to machine dies and their Styrofoam patterns, 3-D CAD systems have been introduced in the tooling shop of automotive manufacturers. However, the work to build solid models requires a lot of time and effort if the designer uses only the general modeling capabilities of commercial 3-D CAD systems. To solve this problem, we customized a 3-D CAD system for the drawing die design. The system provides not only 3-D design capabilities, but also standard part libraries to enhance design productivity. By introducing this system, the drawing dies can be designed more rapidly in the 3-D space, and their solid data can be directly transferred to CAM tools for NC tool path generation and simulation tools for virtual manufacturing

  • PDF

A computational approach to the simulation of controlled flows by synthetic jets actuators

  • Ferlauto, Michele;Marsilio, Roberto
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.1
    • /
    • pp.77-94
    • /
    • 2015
  • The paper focuses on the integration of a non-linear one-dimensional model of Synthetic Jet (SJ) actuator in a well-assessed numerical simulation method for turbulent compressible flows. The computational approach is intended to the implementation of a numerical tool suited for flow control simulations with affordable CPU resources. A strong compromise is sought between the use of boundary conditions or zero-dimensional models and the full simulation of the actuator cavity, in view of long-term simulation with multiple synthetic jet actuators. The model is integrated in a multi-domain numerical procedure where the controlled flow field is simulated by a standard CFD method for compressible RANS equations, while flow inside the actuator is reduced to a one-dimensional duct flow with a moving piston. The non-linear matching between the two systems, which ensures conservation of the mass, momentum and energy is explained. The numerical method is successfully tested against three typical test cases: the jet in quiescent air, the SJ in cross flow and the flow control on the NACA0015 airfoil.