• Title/Summary/Keyword: Three-dimensional printer

Search Result 122, Processing Time 0.029 seconds

A Study on Ceramic Restoration Methods with Full Color 3D Printing (풀 컬러 3D 프린팅을 이용한 도자기 복원 방법 연구)

  • Shin, Woo Cheol;Wi, Koang Chul
    • Journal of Conservation Science
    • /
    • v.36 no.5
    • /
    • pp.306-314
    • /
    • 2020
  • The use of synthetic resins in ceramic restoration poses several challenges, including aging and potential damage to artifacts, which has raised the need to investigate new materials and restoration methods. This study set out to incorporate full color 3D printing into the 3D digital technology-based restoration method, an emerging approach currently being researched, and to print out missing parts with color information. After examining material physical properties with an experiment, the investigator printed out missing parts from a white porcelain vessel and grayish-blue-powdered celadon plate and compared them in chromaticity and brilliance. The experimental results show that the outputs had comparable tensile strength to the original restoration materials, whereas the recorded compressive strength was approximately 1.4~2 times higher than that of the original restoration materials. According to the NIST table of color difference values, the white porcelain vessel was visible at ΔE*ab 1.55, and the grayish-blue-powdered celadon plate was perceivable at 3.34. Even though it was impossible to express the colors accurately owing to printer limitations, this non-contact approach reduced the possibility of damage to the minimum. In conclusion, it can be applied to objects with a high chance of damage or generate display effects through purposeful color differentiation in missing parts.

Obtaining Informed Consent Using Patient Specific 3D Printing Cerebral Aneurysm Model

  • Kim, Pil Soo;Choi, Chang Hwa;Han, In Ho;Lee, Jung Hwan;Choi, Hyuk Jin;Lee, Jae Il
    • Journal of Korean Neurosurgical Society
    • /
    • v.62 no.4
    • /
    • pp.398-404
    • /
    • 2019
  • Objective : Recently, three-dimensional (3D) printed models of the intracranial vascular have served as useful tools in simulation and training for cerebral aneurysm clipping surgery. Precise and realistic 3D printed aneurysm models may improve patients' understanding of the 3D cerebral aneurysm structure. Therefore, we created patient-specific 3D printed aneurysm models as an educational and clinical tool for patients undergoing aneurysm clipping surgery. Herein, we describe how these 3D models can be created and the effects of applying them for patient education purpose. Methods : Twenty patients with unruptured intracranial aneurysm were randomly divided into two groups. We explained and received informed consent from patients in whom 3D printed models-(group I) or computed tomography angiography-(group II) was used to explain aneurysm clipping surgery. The 3D printed intracranial aneurysm models were created based on time-of-flight magnetic resonance angiography using a 3D printer with acrylonitrile-butadiene-styrene resin as the model material. After describing the model to the patients, they completed a questionnaire about their understanding and satisfaction with aneurysm clipping surgery. Results : The 3D printed models were successfully made, and they precisely replicated the actual intracranial aneurysm structure of the corresponding patients. The use of the 3D model was associated with a higher understanding and satisfaction of preoperative patient education and consultation. On a 5-point Likert scale, the average level of understanding was scored as 4.7 (range, 3.0-5.0) in group I. In group II, the average response was 2.5 (range, 2.0-3.0). Conclusion : The 3D printed models were accurate and useful for understanding the intracranial aneurysm structure. In this study, 3D printed intracranial aneurysm models were proven to be helpful in preoperative patient consultation.

Dosimetric Study Using Patient-Specific Three-Dimensional-Printed Head Phantom with Polymer Gel in Radiation Therapy

  • Choi, Yona;Chun, Kook Jin;Kim, Eun San;Jang, Young Jae;Park, Ji-Ae;Kim, Kum Bae;Kim, Geun Hee;Choi, Sang Hyoun
    • Progress in Medical Physics
    • /
    • v.32 no.4
    • /
    • pp.99-106
    • /
    • 2021
  • Purpose: In this study, we aimed to manufacture a patient-specific gel phantom combining three-dimensional (3D) printing and polymer gel and evaluate the radiation dose and dose profile using gel dosimetry. Methods: The patient-specific head phantom was manufactured based on the patient's computed tomography (CT) scan data to create an anatomically replicated phantom; this was then produced using a ColorJet 3D printer. A 3D polymer gel dosimeter called RTgel-100 is contained inside the 3D printing head phantom, and irradiation was performed using a 6 MV LINAC (Varian Clinac) X-ray beam, a linear accelerator for treatment. The irradiated phantom was scanned using magnetic resonance imaging (Siemens) with a magnetic field of 3 Tesla (3T) of the Korea Institute of Nuclear Medicine, and then compared the irradiated head phantom with the dose calculated by the patient's treatment planning system (TPS). Results: The comparison between the Hounsfield unit (HU) values of the CT image of the patient and those of the phantom revealed that they were almost similar. The electron density value of the patient's bone and brain was 996±167 HU and 58±15 HU, respectively, and that of the head phantom bone and brain material was 986±25 HU and 45±17 HU, respectively. The comparison of the data of TPS and 3D gel revealed that the difference in gamma index was 2%/2 mm and the passing rate was within 95%. Conclusions: 3D printing allows us to manufacture variable density phantoms for patient-specific dosimetric quality assurance (DQA), develop a customized body phantom of the patient in the future, and perform a patient-specific dosimetry with film, ion chamber, gel, and so on.

Laser Welding Analysis for 3D Printed Thermoplastic and Poly-acetate Polymers (3차원 광경화성 수지와 폴리아세테이트 수지의 레이저 접합해석)

  • Choi, Hae Woon;Yoon, Sung Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.7
    • /
    • pp.701-706
    • /
    • 2015
  • In this study, experimental and computer simulation results are compared and analyzed. Three-dimensional (3D) fabricated matrices from an MJM 3D printer were joined with poly-acetate thermoplastic polymers using a diode laser. A power range of 5-7 W was used to irradiate the boundary of two polymers. The heated polymers flowed into the matrices of the 3D fabricated structure, and reliable mechanical joining was achieved. Computer simulation showed the temperature distribution in the polymers, and flow direction was estimated based on the flux and temperature information. It was found that the more than the minimum energy threshold was required to effectively join the polymers and that two scans at low-speed were more effective than four scans at high speed.

Damage detection of 3D printed mold using the surface response to excitation method

  • Tashakori, Shervin;Farhangdoust, Saman;Baghalian, Amin;McDaniel, Dwayne;Tansel, Ibrahim N.;Mehrabi, Armin
    • Structural Engineering and Mechanics
    • /
    • v.75 no.3
    • /
    • pp.369-376
    • /
    • 2020
  • The life of conventional steel plastic injection molds is long but manufacturing cost and time are prohibitive for using these molds for producing prototypes of products in limited numbers. Commonly used 3D printers and rapid prototyping methods are capable of directly converting the digital models of three-dimensional solid objects into solid physical parts. Depending on the 3D printer, the final product can be made from different material, such as polymer or metal. Rapid prototyping of parts with the polymeric material is typically cheaper, faster and convenient. However, the life of a polymer mold can be less than a hundred parts. Failure of a polymeric mold during the injection molding process can result in serious safety issues considering very large forces and temperatures are involved. In this study, the feasibility of the inspection of 3D printed molds with the surface response to excitation (SuRE) method was investigated. The SuRE method was originally developed for structural health monitoring and load monitoring in thin-walled plate-like structures. In this study, first, the SuRE method was used to evaluate if the variation of the strain could be monitored when loads were applied to the center of the 3D printed molds. After the successful results were obtained, the SuRE method was used to monitor the artifact (artificial damage) created at the 3D printed mold. The results showed that the SuRE method is a cost effective and robust approach for monitoring the condition of the 3D printed molds.

Design of Fall Impact Protection Pads Using 3D Printing Technology and Comparison of Characteristics according to Structure (3D 프린팅 기술을 활용한 낙상충격 보호패드 설계 및 구조에 따른 특성비교)

  • Park, Jung Hyun;Jung, Hee-Kyeong;Lee, Jeong Ran
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.42 no.4
    • /
    • pp.612-625
    • /
    • 2018
  • This study designed 16 kinds of basic structure and 4 kinds of modified structure for impact protection pads with a spacer fabric shape. The pad is a structure in which hexagonal three-dimensional units, composed of a surface layer and a spacer layer, are interconnected. Designed pads were printed with flexible $NinjaFlex^{(R)}$ materials using a FDM 3D printer. The printed pads were evaluated for impact protection performance, compression properties and sensory properties. The evaluation of the impact protection performance indicated that basic structures better than CR foam material at 20cm height were DV1.5, DX1.5, DX1.0, DV1.0 and HV1.5. The evaluation of the compression properties for the five types, with good results in the impact protection performance, indicated that DV1.0, DX1.0, DV1.5, HV1.5 and DX1.5 showed good results, respectively. The sensory evaluation of DV1.0, DX1.0, and DV1.5, which with good results when considering both the impact protection performance and the compression performance, showed that DV1.0 were the best for surface, flexibility, compression and weight. Therefore, DV1.0 is shown to be the best structure for protection pads.

Evaluation of marginal discrepancy in metal frameworks fabricated by sintering-based computer-aided manufacturing methods

  • Kaleli, Necati;Ural, Cagri;Us, Yesim Olcer
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.3
    • /
    • pp.124-130
    • /
    • 2020
  • PURPOSE. The aim of this in vitro study was to evaluate the effect of sintering procedures on marginal discrepancies of fixed partial metal frameworks fabricated using different sintering-based computer-aided design and computer/aided manufacturing (CAD/CAM) techniques. MATERIALS AND METHODS. Forty resin die models of prepared premolar and molar abutment teeth were fabricated using a three-dimensional (3D) printer and divided into four groups (n = 10) according to the fabrication method of metal frameworks used: HM (via hard milling), SM (via soft metal milling), L25 (via direct metal laser melting [DMLM] with a 25 ㎛ layer thickness), and L50 (via direct DMLM with a 50 ㎛ layer thickness). After the metal frameworks were fabricated and cemented, five vertical marginal discrepancy measurements were recorded in each site (i.e., buccal, facing the pontic, lingual, and facing away from the pontic) of both abutment teeth under a stereomicroscope (×40). Data were statistically analyzed at a significance level of 0.05. RESULTS. No statistically significant differences (P>.05) were found among the four axial sites of metal frameworks fabricated by sintering-based CAD/CAM techniques. The HM and L25 groups showed significantly (P<.001) lower marginal discrepancy values than the SM and L50 groups. CONCLUSION. Marginal discrepancy in the sites facing the pontic was not influenced by the type of sintering procedure. All fabrication methods exhibited clinically acceptable results in terms of marginal discrepancies.

Development of Ergonomic Leg Guard for Baseball Catchers through 3D Modeling and Printing

  • Lee, Hyojeong;Eom, Ran-i;Lee, Yejin
    • Journal of Fashion Business
    • /
    • v.20 no.3
    • /
    • pp.17-29
    • /
    • 2016
  • To develop baseball catcher leg guards, 3-dimensional (3D) methodologies, which are 3D human body data, reverse engineering, modeling, and printing, optimized guard design for representative positions. Optimization was based on analysis of 3D body surface data and subjective evaluation using 3D printing products. Reverse engineering was used for analysis and modeling based on data in three postures: standing, $90^{\circ}$ knee flexion, and $120^{\circ}$ knee flexion. During knee flexion, vertical skin length increased, with the thigh and knee larger in anterior area compared to the horizontal dimension. Moreover, $120^{\circ}$ knee flexion posture had a high radius of curvature in knee movement. Therefore, guard designs were based on increasing rates of skin deformation and numerical values of radius of curvature. Guards were designed with 3-part zoning at the thigh, knee, and shin. Guards 1 and 2 had thigh and knee boundaries allowing vertical skin length deformation because the shape of thigh and knee significantly affects to its performance. Guard 2 was designed with a narrower thigh and wider knee area than guard 1. The guards were manufactured as full-scale products on a 3D printer. Both guards fit better in sitting than standing position, and guard 2 received better evaluations than guard 1. Additional modifications were made and an optimized version (guard 3) was tested. Guard 3 showed the best fit. A design approach based on 3D data effectively determines best fitting leg guards, and 3D printing technology can customize guard design through immediate feedback from a customer.

An Algorithim for Converting 2D Face Image into 3D Model (얼굴 2D 이미지의 3D 모델 변환 알고리즘)

  • Choi, Tae-Jun;Lee, Hee-Man
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.4
    • /
    • pp.41-48
    • /
    • 2015
  • Recently, the spread of 3D printers has been increasing the demand for 3D models. However, the creation of 3D models should have a trained specialist using specialized softwares. This paper is about an algorithm to produce a 3D model from a single sheet of two-dimensional front face photograph, so that ordinary people can easily create 3D models. The background and the foreground are separated from a photo and predetermined constant number vertices are placed on the seperated foreground 2D image at a same interval. The arranged vertex location are extended in three dimensions by using the gray level of the pixel on the vertex and the characteristics of eyebrows and nose of the nomal human face. The separating method of the foreground and the background uses the edge information of the silhouette. The AdaBoost algorithm using the Haar-like feature is also employed to find the location of the eyes and nose. The 3D models obtained by using this algorithm are good enough to use for 3D printing even though some manual treatment might be required a little bit. The algorithm will be useful for providing 3D contents in conjunction with the spread of 3D printers.

3D Topology Optimization of Fixed Offshore Structure and Experimental Validation

  • Kim, Hyun-Seok;Kim, Hyun-Sung;Park, Byoungjae;Lee, Kangsu
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.4
    • /
    • pp.263-271
    • /
    • 2020
  • In this study, we performed a three-dimensional (3D) topology optimization of a fixed offshore structure to enhance its structural stiffness. The proposed topology optimization is based on the solid isotropic material with penalization (SIMP) method, where a volume constraint is applied to utilize an equivalent amount of material as that used for the rule-based scantling design. To investigate the effects of the main legs of the fixed offshore structure on its structural stiffness, the leg region is selectively considered in the design domain of the topology optimization problem. The obtained optimal designs and the rule-based scantling design of the structure are manufactured by 3D metal printing technology to experimentally validate the topology optimization. The behaviors under compressive loading of the obtained optimal designs are compared with those of the rule-based scantling design using a universal testing machine (UTM). Based on the structural experiments, we concluded that by employing the topology optimization method, the structural stiffness of the structure was enhanced compared to that of the rule-based scantling design for an equal amount of the fabrication material. Furthermore, by effectively combining the topology optimization and rule-based scantling methods, we succeeded in enhancing the structural stiffness and improving the breaking load of the fixed offshore structure.