• Title/Summary/Keyword: Three-dimensional models

Search Result 1,611, Processing Time 0.041 seconds

Empirical Comparisons of Disparity Measures for Three Dimensional Log-Linear Models

  • Park, Y.S.;Hong, C.S.;Jeong, D.B.
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.2
    • /
    • pp.543-557
    • /
    • 2006
  • This paper is concerned with the applicability of the chi-square approximation to the six disparity statistics: the Pearson chi-square, the generalized likelihood ratio, the power divergence, the blended weight chi-square, the blended weight Hellinger distance, and the negative exponential disparity statistic. Three dimensional contingency tables of small and moderate sample sizes are generated to be fitted to all possible hierarchical log-linear models: the completely independent model, the conditionally independent model, the partial association models, and the model with one variable independent of the other two. For models with direct solutions of expected cell counts, point estimates and confidence intervals of the 90 and 95 percentage points of six statistics are explored. For model without direct solutions, the empirical significant levels and the empirical powers of six statistics to test the significance of the three factor interaction are computed and compared.

  • PDF

Comparison of 3-D structures of Halo CMEs using cone models

  • Na, Hyeon-Ock;Moon, Y.J.;Jang, Soo-Jeong;Lee, Kyoung-Sun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.95.1-95.1
    • /
    • 2012
  • Halo coronal mass ejections (HCMEs) are major cause of geomagnetic storms and their three dimensional structures are important for space weather. In this study, we compare three cone models: an elliptical cone model, an ice-cream cone model, and an asymmetric cone model. These models allow us to determine the three dimensional parameters of HCMEs such as radial speed, angular width, and the angle (${\gamma}$) between sky plane and cone axis. We compare these parameters obtained from three models using 62 well-observed HCMEs from 2001 to 2002. Then we obtain the root mean square error (RMS error) between maximum measured projection speeds and their calculated projection speeds from the cone models. As a result, we find that the radial speeds obtained from the models are well correlated with one another (R > 0.84). The correlation coefficients between angular widths are less than 0.53 and those between ${\gamma}$ values are less than 0.47, which are much smaller than expected. The reason may be due to different assumptions and methods. The RMS errors of the elliptical cone model, the ice-cream cone model, and the asymmetric cone model are 213 km/s, 254 km/s, and 267 km/s, respectively. Finally, we discuss their strengths and weaknesses in terms of space weather application.

  • PDF

A reliable method for evaluating upper molar distalization: Superimposition of three-dimensional digital models

  • Nalcaci, Ruhi;Kocoglu-Altan, Ayse Burcu;Bicakci, Ali Altug;Ozturk, Firat;Babacan, Hasan
    • The korean journal of orthodontics
    • /
    • v.45 no.2
    • /
    • pp.82-88
    • /
    • 2015
  • Objective: The aim of this study was to evaluate the reliability of measurements obtained after the superimposition of three-dimensional (3D) digital models by comparing them with those obtained from lateral cephalometric radiographs and photocopies of plaster models for the evaluation of upper molar distalization. Methods: Data were collected from plaster models and lateral cephalometric radiographs of 20 Class II patients whose maxillary first molars were distalized with an intraoral distalizer. The posterior movements of the maxillary first molars were evaluated using lateral cephalometric radiographs (group CP), photocopies of plaster models (group PH), and digitized 3D models (group TD). Additionally, distalization and expansion of the other teeth and the degrees of molar rotation were measured in group PH and group TD and compared between the two groups. Results: No significant difference was observed regarding the amount of molar distalization among the three groups. A comparison of the aforementioned parameters between group PH and group TD did not reveal any significant difference. Conclusions: 3D digital models are reliable to assess the results of upper molar distalization and can be considered a valid alternative to conventional measurement methods.

Three-Dimensional Dose Distribution for the System of Linear Accelerator-based Stereotactic Radiosurgery (LINAC을 이용한 뇌정위적 방사선 수술에 대한 3 차원 선량분포)

  • Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.2 no.2
    • /
    • pp.121-128
    • /
    • 1991
  • Radiosurgery treatment in the brain requires detailed information on three-dimensional dose distribution. A three-dimensional treatment planning is a prerequisite for treatment plan optimization. It must cover 3-D methods for representing the patient, the dose distributions, and beam settings. Three-dimensional dose models for non-coplanar moving arcs were developed using measured single beam data and efficient 3-D dose algorithms for circular fields. The implementation of three dimensional dose algorithms with stereotactic radiosurgery and the application of the algorithms to several cases are discussed.

  • PDF

Assessment of metal artifacts in three-dimensional dental surface models derived by cone-beam computed tomography

  • Nabha, Wael;Hong, Young-Min;Cho, Jin-Hyoung;Hwang, Hyeon-Shik
    • The korean journal of orthodontics
    • /
    • v.44 no.5
    • /
    • pp.229-235
    • /
    • 2014
  • Objective: The aim of this study was to assess artifacts induced by metallic restorations in three-dimensional (3D) dental surface models derived by cone-beam computed tomography (CBCT). Methods: Fifteen specimens, each with four extracted human premolars and molars embedded in a plaster block, were scanned by CBCT before and after the cavitated second premolars were restored with dental amalgam. Five consecutive surface models of each specimen were created according to increasing restoration size: no restoration (control) and small occlusal, large occlusal, disto-occlusal, and mesio-occluso-distal restorations. After registering each restored model with the control model, maximum linear discrepancy, area, and intensity of the artifacts were measured and compared. Results: Artifacts developed mostly on the buccal and lingual surfaces. They occurred not only on the second premolar but also on the first premolar and first molar. The parametric values increased significantly with increasing restoration size. Conclusions: Metallic restorations induce considerable artifacts in 3D dental surface models. Artifact reduction should be taken into consideration for a proper diagnosis and treatment planning when using 3D surface model derived by CBCT in dentofacial deformity patients.

Establishment of DNN and Decoder models to predict fluid dynamic characteristics of biomimetic three-dimensional wavy wings (DNN과 Decoder 모델 구축을 통한 생체모방 3차원 파형 익형의 유체역학적 특성 예측)

  • Minki Kim;Hyun Sik Yoon;Janghoon Seo;Min Il Kim
    • Journal of the Korean Society of Visualization
    • /
    • v.22 no.1
    • /
    • pp.49-60
    • /
    • 2024
  • The purpose of this study establishes the deep neural network (DNN) and Decoder models to predict the flow and thermal fields of three-dimensional wavy wings as a passive flow control. The wide ranges of the wavy geometric parameters of wave amplitude and wave number are considered for the various the angles of attack and the aspect ratios of a wing. The huge dataset for training and test of the deep learning models are generated using computational fluid dynamics (CFD). The DNN and Decoder models exhibit quantitatively accurate predictions for aerodynamic coefficients and Nusselt numbers, also qualitative pressure, limiting streamlines, and Nusselt number distributions on the surface. Particularly, Decoder model regenerates the important flow features of tiny vortices in the valleys, which makes a delay of the stall. Also, the spiral vortical formation is realized by the Decoder model, which enhances the lift.

Stress Analysis for Lower End Fitting of Advanced LWR Fuel (원자로 신형핵연료 하단고정체 응력 해석)

  • 이상순;문연철;변영주;김형구
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.139-145
    • /
    • 2002
  • In this study, the geometric modeling has been conducted for 2 models of lower end fitting of advanced LWR fuel using three-dimensional solid modeler, Solidworks. Then, the optimization and the three-dimensional stress analysis using the finite element method has been peformed. The evaluation for the mechanical integrity of 2 models has been peformed based on the stress distribution obtained from the finite element analysis.

  • PDF

Grouping-based 3D Animation Data Compression Method (군집화 기반 3차원 애니메이션 데이터 압축 기법)

  • Choi, Young-Jin;Yeo, Du-Hwan;Klm, Hyung-Seok;Kim, Jee-In
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.461-468
    • /
    • 2008
  • The needs for visualizing interactive multimedia contents on portable devices with realistic three dimensional shapes are increasing as new ubiquitous services are coming into reality. Especially in digital fashion applications with virtual reality technologies for clothes of various forms on different avatars, it is required to provide very high quality visual models over mobile networks. Due to limited network bandwidths and memory spaces of portable devices, it is very difficult to transmit visual data effectively and render realistic appearance of three dimensional images. In this thesis, we propose a compression method to reduce three dimensional data for digital fashion applications. The three dimensional model includes animation of avatar which require very large amounts of data over time. Our proposed method utilizes temporal and spatial coherence of animation data, to reduce the amount. By grouping vertices from three dimensional models, the entire animation is represented by a movement path of a few representative vertices. The existing three dimensional model compression approaches can get benefits from the proposed method by reducing the compression sources through grouping. We expect that the proposed method to be applied not only to three dimensional garment animations but also to generic deformable objects.

  • PDF

Three Dimensional Segmentation in PCNN

  • Nishi, Naoya;Tanaka, Masaru;Kurita, Takio
    • Proceedings of the IEEK Conference
    • /
    • 2002.07b
    • /
    • pp.802-805
    • /
    • 2002
  • In the three-dimensional domain image expressed with two-dimensional slice images, such as fMRI images and multi-slice CT images, we propose the three-dimensional domain automatic segmentation for the purpose of extracting region. In this paper, we segmented each domain from the fMRI images of the head of people and monkey. We used the neural network "Pulse-Coupled Neural Network" which is one of the models of visual cortex of the brain based on the knowledge from neurophysiology as the technique. By using this technique, we can segment the region without any learning. Then, we reported the result of division of each domain and extraction to the fMRI slice images of human's head using "three-dimensional Pulse-Coupled Neural Network" which is arranged and created the neuron in the shape of a three-dimensional lattice.

  • PDF

A study on the three dimensional turbulent flow analysis of wake flow behind rotating blade row between hub and midspan (허브와 중앙스팬 사이의 회전익 후류 3차원 난류유동해석에 관한 연구)

  • No, Su-Hyeok;Jo, Gang-Rae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.7
    • /
    • pp.911-918
    • /
    • 1997
  • The turbulent viscous wake flows behind a single airfoil, two-dimensional stationary blade row and three-dimensional rotating blade row were calculated, and the numerical results were compared with experimental ones. The numerical technique was based on the SIMPLE algorithm using three turbulent closure models, standard k-.epsilon. model(WFM), low Reynolds number k-.epsilon. model(LRN) and Reynolds stress model (RSM). In the case of a single airfoil, WFM, LRN and RSM presented fairly good velocity distributions in the wake compared with experimental data. In the case of the stationary blade row, LRN and RSM presented better results than WFM for wake velocity distribution, and especially LRN showed best results among these three turbulent models. In the case of the rotating blade row, WFM and LRN showed fairly good agreement with experimental data of the three-dimensional velocity component distributions in the range from hub to mid span region. LRN was also superior to WFM in accuracy of prediction for the wake velocity distribution as same with the cases of a airfoil and the stationary blade row.