• Title/Summary/Keyword: Three-dimensional microstructure

Search Result 105, Processing Time 0.027 seconds

Application of the Polymer Behavior Model to 3D Structure Fabrication (3차원 미세 구조물 제작을 위한 폴리머 유동 모델의 적용)

  • Kim, Jong-Young;Cho, Dong-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.12
    • /
    • pp.123-130
    • /
    • 2009
  • This study presents the application of a polymer behavior model that considers fluid mechanics and heat transfer effects in a deposition system. The analysis of the polymer fluid properties is very important in the fabrication of precise microstructures. This fluid behavior model involves the calculation of velocity distribution and mass flow rates that include the effect of heat loss in the needle. The effectiveness of the proposed method was demonstrated by comparing estimated mass fluid rates with experimental values. The mass fluid rates under various process conditions, such as pressure, temperature, and needle size, reflected the actual deposition state relatively well, and the assumption that molten polycaprolactone(PCL) is a non-Newtonian fluid was reasonable. The successful fabrication of three-dimensional microstructures demonstrated that the model is valid for predicting the polymer behavior characteristics in the microstructure fabrication process. The results of this study can be used to investigate the effect of various parameters on fabricated structures before turning to experimental approaches.

Analysis of Residual Stresses in Weldede joints of SM570-TMC Steel (SM570-TMC 강 용접접합부의 잔류응력 해석)

  • Park, Hyeon-Chan;Lee, Jin-Hyeong;Lee, Jin-Hui;Jang, Gyeong-Ho
    • Proceedings of the KWS Conference
    • /
    • 2005.11a
    • /
    • pp.79-81
    • /
    • 2005
  • Bridges constructed recently are preferred to have long spans and simple structure details considering not only the function as bridge but scenic beauty, maintenance, construction term and life cycle cost, etc. Therefore, they require high performance steels like extra-thick plate steels and TMCP steels. A TMCP steel produced by themo-mechanical control process is now spot lighted due to the weldability for less carbon equivalent. It improved at strength and toughness in microstructure. Recently, the SM570-TMC steel which is a high strength TMCP steel whose tensile strength is 600MPa has been developed and applied to steel structures. But, for the application of this steel to steel structures, it is necessary to elucidate not only the material characteristics but also the mechanical characteristic of welded joints. In this study, the characteristics of residual stresses in welded joints of SM570-TMC steel were studied through the three-dimensional thermal elastic-plastic analyses on the basis of mechanical properties at high temperatures obtained from the elevated temperature tensile test.

  • PDF

Photonic sensors for micro-damage detection: A proof of concept using numerical simulation

  • Sheyka, M.;El-Kady, I.;Su, M.F.;Taha, M.M. Reda
    • Smart Structures and Systems
    • /
    • v.5 no.4
    • /
    • pp.483-494
    • /
    • 2009
  • Damage detection has been proven to be a challenging task in structural health monitoring (SHM) due to the fact that damage cannot be measured. The difficulty associated with damage detection is related to electing a feature that is sensitive to damage occurrence and evolution. This difficulty increases as the damage size decreases limiting the ability to detect damage occurrence at the micron and submicron length scale. Damage detection at this length scale is of interest for sensitive structures such as aircrafts and nuclear facilities. In this paper a new photonic sensor based on photonic crystal (PhC) technology that can be synthesized at the nanoscale is introduced. PhCs are synthetic materials that are capable of controlling light propagation by creating a photonic bandgap where light is forbidden to propagate. The interesting feature of PhC is that its photonic signature is strongly tied to its microstructure periodicity. This study demonstrates that when a PhC sensor adhered to polymer substrate experiences micron or submicron damage, it will experience changes in its microstructural periodicity thereby creating a photonic signature that can be related to damage severity. This concept is validated here using a three-dimensional integrated numerical simulation.

A Study for The Effect of Variation of Resin Content on The Rheological Characteristics of Ink Vehicle (수지의 함량 변화에 따른 잉크 비히클의 유변학적 특성에 관한 연구)

  • Bang, Jong-Gwan;Kim, Sung-Bin;Kim, Tae-Hwan;Lee, Kyu-Il
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.23 no.2
    • /
    • pp.117-128
    • /
    • 2005
  • Printing inks are basically dispersions of solid pigment particles in a vehicle. Pigment flocculation and/or colloidal aggregates created by thixotrope additives form a three- dimensional network in the inks. This structure complicates the flow behaviour of inks. However, if the internal structure is formed under control, the printing process will benefit from it because the ink must satify rheological requirements over a very wide range of shear conditions. The presence of internal structure results in the following prominent non-Newtonian rheological properties: viscoelasticity, yield stress, shear thinning and thixotropy. If the components of printing inks were changed, the rheological characteristics such as viscosity, yield stress, viscoelasticity and tack value were considerably varied. Thus, in this paper, the effects of changing the content of rosin modified phenolic resin on rheological properties of the vehicle will be studied. For that, the rheological properties were found by flow, yield stress, creep and oscillation measurements using Bohlin C-VOR Rotational Rheometer. And Emulsion rheology and its microstructure will be investigated.

  • PDF

Three-dimensional microstructure of human alveolar trabecular bone: a micro-computed tomography study

  • Lee, Ji-Hyun;Kim, Hee-Jin;Yun, Jeong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.47 no.1
    • /
    • pp.20-29
    • /
    • 2017
  • Purpose: The microstructural characteristics of trabecular bone were identified using micro-computed tomography (micro-CT), in order to develop a potential strategy for implant surface improvement to facilitate osseointegration. Methods: Alveolar bone specimens from the cadavers of 30 humans were scanned by high-resolution micro-CT and reconstructed. Volumes of interest chosen within the jaw were classified according to Hounsfield units into 4 bone quality categories. Several structural parameters were measured and statistically analyzed. Results: Alveolar bone specimens with D1 bone quality had significantly higher values for all structural parameters than the other bone quality categories, except for trabecular thickness (Tb.Th). The percentage of bone volume, trabecular separation (Tb.Sp), and trabecular number (Tb.N) varied significantly among bone quality categories. Tb.Sp varied markedly across the bone quality categories (D1: $0.59{\pm}0.22mm$, D4: $1.20{\pm}0.48mm$), whereas Tb.Th had similar values (D1: $0.30{\pm}0.08mm$, D4: $0.22{\pm}0.05mm$). Conclusions: Bone quality depended on Tb.Sp and number-that is, endosteal space architecture-rather than bone surface and Tb.Th. Regardless of bone quality, Tb.Th showed little variation. These factors should be taken into account when developing individualized implant surface topographies.

Fabrication of Three-Dimensional Micro Optical and Fluidic System Using Dual Stage Nanostereolithography Process (이중 스테이지를 이용한 대면적 3차원 광/유체 마이크로 디바이스 제작에 관한 연구)

  • Lim, Tae Woo;Yang, Dong-Yol
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.10
    • /
    • pp.552-557
    • /
    • 2015
  • The nanostereolithography process using a femtosecond laser has been shown to have strong merits for the direct fabrication of 2D/3D micro structures. In addition, a femtosecond laser provides efficient tools for precise micromachining owing to the advantages of a small and feeble heat effect zone. In this paper, we report an effective fabrication process of 3D micro optical and fluidic devices using nanostereolithography process composed of a dual stage system. Process conditions for additive and subtractive fabrication are examined. The Piezo stage scanning system is used for 3D micro-fabrication in unit area of sub-mm scale, and the motor stage is employed in fabrication on the scale of several mm. The misalignment between the pizeo- and motor- stages is revised through rotational transformation of CAD data in the unit domain. Here, the effectiveness of the proposed process is demonstrated through examples using 3D optical and microfluidic structures.

Numerical simulation of hot embossing filling (핫엠보싱 충전공정에 관한 수치해석)

  • Kang T. G.;Kwon T. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.43-46
    • /
    • 2005
  • Micro molding technology is a promising mass production technology for polymer based microstructures. Mass production technologies such as the micro injection/compression molding, hot embossing, and micro reaction molding are already in use. In the present study, we have developed a numerical analysis system to simulate three-dimensional non-isothermal cavity filling for hot embossing, with a special emphasis on the free surface capturing. Precise free surface capturing has been successfully accomplished with the level set method, which is solved by means of the Runge-Kutta discontinuous Galerkin (RKDG) method. The RKDG method turns out to be excellent from the viewpoint of both numerical stability and accuracy of volume conservation. The Stokes equations are solved by the stabilized finite element method using the equal order tri-linear interpolation function. To prevent possible numerical oscillation in temperature Held we employ the streamline upwind Petrov-Galerkin (SUPG) method. With the developed code we investigated the detailed change of free surface shape in time during the mold filling. In the filling simulation of a simple rectangular cavity with repeating protruded parts, we find out that filling patterns are significantly influenced by the geometric characteristics such as the thickness of base plate and the aspect ratio and pitch of repeating microstructures. The numerical analysis system enables us to understand the basic flow and material deformation taking place during the cavity filling stage in microstructure fabrications.

  • PDF

High-valence Mo doping for promoted water splitting of Ni layered double hydroxide microcrystals

  • Kyoungwon Cho;Seungwon Jeong;Je Hong Park;Si Beom Yu;Byeong Jun Kim;Jeong Ho Ryu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.2
    • /
    • pp.78-82
    • /
    • 2023
  • The oxygen evolution reaction (OER) is the primary challenge in renewable energy storage technologies, specifically electrochemical water splitting for hydrogen generation. We report effects of Mo doping into Ni layered double hydroxide (Ni-LDH) microcrystal on electrocatalytic activities. In this study, Mo doped Ni-LDH were grown on three-dimensional porous nicekl foam (NF) by a facile solvothermal method. Homogeneous LDH structure on the NF was clearly observed. However, the surface microstructure of the nickel foam began to be irregular and collapsed when Mo precursor is doped. Electrocatalytic OER properties were analyzed by Linear sweep voltammetry (LSV) and Electrochemical impedance spectroscopy (EIS). The amount of Mo doping used in the electrocatalytic reaction was found to play a crucial role in improving catalytic activity. The optimum Mo amount introduced into the Ni LDH was discussed with respect to their OER performance.

3 Dimensional Changes of Bedrock Surface with Physical Modelling of Abrasion (마식에 의한 기반암면의 표면 변화에 대한 실험 연구)

  • Kim, Jong-Yeon
    • Journal of the Korean Geographical Society
    • /
    • v.42 no.4
    • /
    • pp.506-525
    • /
    • 2007
  • Incision into bedrock channel is the primary control of landform evolution, but research into bedrock incision process stagnated for long time. Due to the scaling problem of the application of results from flume studies to bedrock channel, there is a strong need to simulate the bedrock incision process with more realistic models. As a part of investigation into controls of bedrock channel incision, three-dimensional changes of rock surface with abrasion was investigated with physical modelling. 18 rock plates were abraded with various sediment particle size and sediment load and abraded surfaces of the plates were scanned with high resolution 3-D scanner. To identify the spatial pattern of erosion of the rock plates, various methods were used. There was no synthetic or holistic method that showed all features of bedrock plate produced by abrasion, so each plate was analyzed using some available methods. Contour maps, shaded relief maps and profiles show that abrasion concentrated on the centre of plate (cross profile) and upstream and downstream edges (longitudinal profile) and eroded area extended inwards. It also found that the cracks and boundaries of forming materials easily eroded than other parts. Changing patterns of surface roughness were investigated with profiles, regression analysis and spectral analysis. Majority of plates showed decrease in small-scale roughness, but it depends on microstructures of the plates rather than general hardness or other factors. SEM inspection results supported this idea.

Material Characteristics of Ti-6Al-4V Alloy Manufactured by Electron Beam Melting for Orthopedic Implants (전자빔 용해 방법으로 제조된 정형외과 임플란트용 Ti-6Al-4V 합금의 재료 특성 분석)

  • Gang, Gwan-Su;Jeong, Yong-Hun;Jang, Tae-Gon;Yang, Jae-Ung;Jeong, Jae-Yeong;Park, Gwang-Min;U, Su-Heon;Park, Tae-Hyeon
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.25-25
    • /
    • 2018
  • Electron beam melting (EBM) is one of powder based additive manufacturing technology used to produce parts for high geometrical complexity and directly with three-dimensional computer aided design (CAD) model. It is kind of the most promising methods with additive manufacturing for a wide range of medical applications, such as orthopedic, dental implant, and etc. This research has been investigated the microstructure and mechanical properties of as fabricated and hot iso-static pressing (HIP) processed specimens, which are made by an Arcam A1 EBM system. The Ti-6Al-4V titanium alloy powder was used as a material for the 3 dimensional printing specimens. Mechanical properties were conducted with EBM manufacturing and computer numerical control (CNC) machining specimens, respectively. Surface morphological analysis was conducted by scanning electron microscopy (SEM) for their surface, dissected plan, and fractured surface after tensile test. The mechanical properties were included tensile stress-strain and nano-indentation test as a analysis level between nano and macro. As following highlighted results, the stress-strain curves on elastic region were almost similar between as fabricated and HIP processed while the ductile (plastic deformed region) properties were higher with HIP than that of as fabricated processed.

  • PDF