• 제목/요약/키워드: Three-dimensional effects

검색결과 1,747건 처리시간 0.024초

SMS 압축성형공정의 3차원 유한요소해석 (Three-Dimensional Finite Element Analysis of compression Molding of Sheet Molding Compound)

  • 김수영;임용택
    • 소성∙가공
    • /
    • 제4권1호
    • /
    • pp.39-47
    • /
    • 1995
  • The compression molding of SMC (sheet molding compund) at room temperature was analyzed based on rigid-viscoplastic approach by three dimensional finite element program. The developed program was tested by solving the three dimensional compression of wedge type specimens of aluminum alloys at various processing conditions. The simulation results were compared well to the experimental results available in the literature. based on this comparison the program was proved to be valid and was further applied in solving compression molding of SMC, which is a thermosetting material reinforced with chopped fiber glass. To investigate the effects of friction conditions and mold closing speeds for compression molding of SMC charge at room temperature, compressions of the cylindrical and rectangular shaped SMC were analyzed for various friction conditions and mold closing speeds. The calculated load values were compared to the experimental results for the compression molding of cylindrical specimen.

  • PDF

수평보강재로 보강된 터널 막장의 거동에 관한 축소 모형실험 (Reduced-Scale Model Tests on the Behavior of Tunnel Face Reinforced with longitudinal reinforcements)

  • 유충식;신현강
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.79-86
    • /
    • 2000
  • This paper presents the results of a parametric study on the behavior of tunnel face reinforced with horizontal pipes. A series of reduced-scale model tests was carried out to in an attempt to verify previously performed three-dimensional numerical modeling and to investigate effects of reinforcement layout on the tunnel face deformation behavior The results of model tests indicate that the tunnel face deformation can significantly reduced by pre-reinforcing the tunnel face with longitudinal members and thus enhancing the tunnel stability. In addition, the model tests results compare fairly well with those from the previously performed three-dimensional finite element analysis. Therefore, a properly calibrated three dimensional model may effectively be used in the study of tunnel face reinforcing technique.

  • PDF

진동 특성을 고려한 승용차용 사이드 미러의 설계 (Design of a Side Mirror for Passenger Vehicle Based on Vibration Characteristics)

  • 손상욱;손권
    • 소음진동
    • /
    • 제9권4호
    • /
    • pp.703-713
    • /
    • 1999
  • A side mirror is an important safety tool with which the driver can observe objects out of sight. This paper presents an organized design technology for the side mirror of improved vibration characteristics. Resonance response to forced vibration is critical to observability through the mirror to be designed. This study aims at the reduction of vibration level by the modification of mirror structures and consequent effects are predicted by computer simulations. We used a three-dimensional solid modeling and the modal and frequency analysis ; Pro/Engineer is used as a solid modeler; Pro/Mechanica for vibration analysis. The simulation results are compared with those obtained in experiemnts to check the validity by the three-dimensional modeling. The design technique of side mirror has been established and found to be effective in vibration analysis of redesigned parts.

  • PDF

Three-Dimensional Flow Analysis and Improvement of Slip Factor Model for Forward-Curved Blades Centrifugal Fan

  • Guo, En-Min;Kim, Kwang-Yong
    • Journal of Mechanical Science and Technology
    • /
    • 제18권2호
    • /
    • pp.302-312
    • /
    • 2004
  • This work developed improved slip factor model and correction method to predict flow through impeller in forward-curved centrifugal fan. Both steady and unsteady three-dimensional CFD analyses were performed to validate the slip factor model and the correction method. The results show that the improved slip factor model presented in this paper could provide more accurate predictions for forward-curved centrifugal impeller than the other slip factor models since the present model takes into account the effect of blade curvature. The correction method is provided to predict mass-averaged absolute circumferential velocity at the exit of impeller by taking account of blockage effects induced by the large-scale backflow near the front plate and flow separation within blade passage. The comparison with CFD results also shows that the improved slip factor model coupled with the present correction method provides accurate predictions for mass-averaged absolute circumferential velocity at the exit of impeller near and above the flow rate of peak total pressure coefficient.

증발가스 배출물 억제를 위한 자동차용 캐니스터의 3차원 유동장 해석 (Three-Dimensional Fluid Flow Analysis of Automotive Carbon Canister for Reducing Evaporative Emissions)

  • 정수진;김우승
    • 한국자동차공학회논문집
    • /
    • 제9권6호
    • /
    • pp.85-93
    • /
    • 2001
  • Minimized canister flow restriction and maximized flow uniformity are desired to maximize a purge capability. With the impending ORVR(On Board Refueling Vapor Recovery) systems, the reduction of restriction and increase of flow uniformity in a carbon canister becomes even more critical to meet the stringent regulation. In this study, three-dimensional numerical simulations have been performed to investigate the three-dimensional internal flow patterns in a carbon canister during purge. The effects of the declined angle of the purge pipe and the number of partitions on the pressure drop and purge efficiency in a carbon packed bed are examined. Results show that the purge efficiency and space velocity distribution are affected in the upstream region of 40% of total canister bed by porosity of carbon granule and angle of purge pipe. It is also found that the purge efficiency decreases with increasing the number of partitions.

  • PDF

SOI 소자 셀프-히팅 효과의 3차원적 해석 (Three-Dimensional Analysis of Self-Heating Effects in SOI Device)

  • 이준하;이흥주
    • 반도체디스플레이기술학회지
    • /
    • 제3권4호
    • /
    • pp.29-32
    • /
    • 2004
  • Fully depleted Silicon-on-Insulator (FD-SOI) devices lead to better electrical characteristics than bulk CMOS devices. However, the presence of a thin top silicon layer and a buried SiO2 layer causes self-heating due to the low thermal conductivity of the buried oxide. The electrical characteristics of FDSOI devices strongly depend on the path of heat dissipation. In this paper, we present a new three-dimensional (3-D) analysis technique for the self-heating effect of the finger-type and bar-type transistors. The 3-D analysis results show that the drain current of the finger-type transistor is 14.7% smaller than that of the bar-type transistor due to the 3-D self-heating effect. We have learned that the rate of current degradation increases significantly when the width of a transistor is smaller that a critical value in a finger-type layout. The current degradation fro the 3-D structures of the finger-type and bar-type transistors is investigated and the design issues are also discussed.

  • PDF

Numerical study of wake structure behind a square cylinder at high Reynolds number

  • Lee, Sungsu
    • Wind and Structures
    • /
    • 제1권2호
    • /
    • pp.127-144
    • /
    • 1998
  • In this paper, the wake structures behind a square cylinder at the Reynolds number of 22,000 are simulated using the large eddy simulation, and the main features of the wake structure associated with unsteady vortex-shedding are investigated. The Smagorinsky model is used for parametrization of the subgrid scales. The finite element method with isoparametric linear elements is employed in the computations. Unsteady computations are performed using the explicit method with streamline upwind scheme for the advection term. The time integration incorporates a subcycling strategy. No-slip condition is enforced on the wall surface. A comparative study between two-and three-dimensional computations puts a stress on the three-dimensional effects in turbulent flow simulations. Simulated three-dimensional wake structures are compared with numerical and experimental results reported by other researchers. The results include time-averaged, phase-averaged flow fields and numerically visualized vortex-shedding pattern using streaklines. The results show that dynamics of the vortex-shedding phenomenon are numerically well reproduced using the present method of finite element implementation of large eddy simulation.

정지비행하는 작은 벌의 3차원 공력특성 (Three Dimensional Aerodynamic Characteristics of a Small Bee in Hovering Flight)

  • 노기덕
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2006년도 추계학술대회 논문집
    • /
    • pp.102-108
    • /
    • 2006
  • The three-dimensional flows in the Weis-Fogh mechanism are studied by flow visualization and numerical simulation by the discrete vortex method. In this mechanism, two wings open, touching their trailing edges (fling), and rotate in opposite directions in the horizontal plane. The structure of the vortex systems shed from the wings is very complicated and their effects on the forces on the wings have not yet been clarified. The discrete vortex method, especially the vortex stick method, is employed to investigate the vortex structure in the wake of the two wings. The wings are represented by lattice vortices, and the shed vortices are expressed by discrete three-dimensional vortex sticks. The vortex distributions and the velocity field are calculated. The pressure is estimated by the Bernoulli equation, and the lift on the wing are also obtained.

  • PDF

터빈 익렬내부의 3차원 압축성 점성유동장의 수치해석 (Numerical Analysis of Three-Dimensional Compressible Viscous Flow Field in Turbine Cascade)

  • 정희택;백제현
    • 대한기계학회논문집
    • /
    • 제16권10호
    • /
    • pp.1915-1927
    • /
    • 1992
  • 본 연구에서는 3차원 압축성 내부유동해석 코드를 개발하여 터어빈 정익이나 동익 내부의 차원 익렬 유동을 수치적으로 해석하고자 한다. 여기에서 사용된 코드 는 Obyashi의 LU-ADI기법을 이용한 기존의 2차원 익렬 유동해석 코드를 3차원 유동장 으로 학장한 것이고, 난류유동해석에는, Baldwin-Lomax의 박층 대수모델을 3차원으로 확장한 알고리즘을 적용하였다.Kiock등이 실험한 선형 터어빈 익렬 내부의 천음속 유동장에 적용하여 양끝 벽면에 의한 3차원 유동장 특성을 분석하고, 3차원 익렬 유동 코드의 적합성을 검토하였다.

지하철 운행에 의한 건축물 진동 평가 (Evaluation of Subway Induced Vibration Effects on Building Structures)

  • 서정범;박용석;홍성철
    • 한국산학기술학회논문지
    • /
    • 제9권5호
    • /
    • pp.1107-1112
    • /
    • 2008
  • 건축 구조물의 진동특성은 시험으로 알아내기가 어렵기 때문에 지진이나 다른 가진에 대한 영향을 미리 평가하기가 매우 어려웠다. 그러나 근래에 들어 해석 기술이 발전함에 따라 건축물에 대한 성능을 예측해 볼 수 있게 되었다. 건축 구조물의 진동특성 예측은 지금까지는 2차원 평면 해석이 주를 이루었고, 3차원 해석은 이루어지지 않고 있었다. 2차원 해석은 건축물이 비대칭일 때 해석의 신뢰성을 떨어뜨리는 문제를 안고 있다. 본 논문에서는 주거건축물을 3차원으로 모델링하였으며, 지하철 통과시 주거 건축물의 진동 해석을 수행하였다.