• 제목/요약/키워드: Three-dimensional Vibration Analysis

검색결과 301건 처리시간 0.023초

3 차원 직선형 구조물의 동적응답에 대한 감도해석 (A Study of Sensitivity Analysis on Dynamic Response of Three Dimensional Rectilinear Structure)

  • 문덕홍;강현석;최명수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.556-562
    • /
    • 2000
  • This paper presents new sensitivity analysis algorithm for the dynamic response of three dimensional rectilinear type structure. This method is derived from a combination of the transfer stiffness coefficient method(TSCM) and the Newmark method. We developed dynamic response analysis algorithm by TSCM. This method has more safe computational precision and time than transfer matrix method(TMM). We defined new design variable and object function, and computated simple three dimensional computation model by TSCM. The presented analysis algorithm was validated by results of changing design variable.

  • PDF

탑재장비 3차원 지지구조 형상을 고려한 틸트로터 항공기 전산진동해석 및 특성분석 (Computational Vibration and Characteristic Analyses for Tilt-Rotor Vehicle Considered 3-Dimensional Supporting Equipment Structures)

  • 김유성;김동현;김동만;이정진;김성준
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.1000-1007
    • /
    • 2007
  • In this study, structural vibration analyses of a smart unmanned aerial vehicle (UAV) have been conducted considering dynamic hub-loads of tilt rotor. Practical computational structural dynamics technique based on the finite element method is applied using MSC/NASTRAN. The present UAV(TR-S5-04) finite element model is constructed as a full three-dimensional configuration with different fuel conditions and tilting angles for helicopter, transient and airplane flight modes. In addition, the 3-dimensional supporting equipment structures of electronic devices are considered for vibration analysis. As the results of this study, transient structural displacements and accelerations are presented in detail. Moreover, vibration characteristics of structural parts and installed equipments are investigated for different fuel conditions and tilting angles.

  • PDF

전달행렬법을 이용한 3차원 파이프 계의 진동해석 (Vibration Analysis of Three-Dimensional Piping System by Transfer Matrix Method)

  • 이동명
    • 한국생산제조학회지
    • /
    • 제7권6호
    • /
    • pp.110-116
    • /
    • 1998
  • For the vibration analysis of 3-dimensional piping system containing fluid flow, a transfer matrix method is presented. The fluid velocity and pressure were considered, that coupled to longitudinal and flexural vibrations. Transfer matrices and point matrices were derived from direct solutions of the differential equations of motion of pipe conveying fluids, and the variations of natural frequency with flow velocity for 3-dimensional piping system were investigated.

  • PDF

Three-dimensional finite element modelling and dynamic response analysis of track-embankment-ground system subjected to high-speed train moving loads

  • Fu, Qiang;Wu, Yang
    • Geomechanics and Engineering
    • /
    • 제19권3호
    • /
    • pp.241-254
    • /
    • 2019
  • A finite element approach is presented to examine ground vibration characteristics under various moving loads in a homogeneous half-space. Four loading modes including single load, double load, four-load, and twenty-load were simulated in a finite element analysis to observe their influence on ground vibrations. Four load moving speeds of 60, 80, 100, and 120 m/s were adopted to investigate the influence of train speed to the ground vibrations. The results demonstrated that the loading mode in a finite element analysis is reliable for train-induced vibration simulations. Additionally, a three-dimensional finite element model (3D FEM) was developed to investigate the dynamic responses of a track-ballast-embankment-ground system subjected to moving loads induced by high-speed trains. Results showed that vibration attenuations and breaks exist in the simulated wave fronts transiting through different medium materials. These tendencies are a result of the difference in the Rayleigh wave speeds of the medium materials relative to the speed of the moving train. The vibration waves induced by train loading were greatly influenced by the weakening effect of sloping surfaces on the ballast and embankment. Moreover, these tendencies were significant when the vibration waves are at medium and high frequency levels. The vibration waves reflected by the sloping surface were trapped and dissipated within the track-ballast-embankment-ground system. Thus, the vibration amplitude outside the embankment was significantly reduced.

임의의 곡률과 변두께를 갖는 두꺼운 축대칭 회전 셸의 3차원적 장방정식, 운동 방정식, 에너지 범함수 (Three-Dimensional Field Equations, Equations of Motion, and Energy Functionals for Thick Shells of Revolution with Arbitrary Curvature and Variable Thickness)

  • 강재훈;이은택;양근혁
    • 소음진동
    • /
    • 제11권1호
    • /
    • pp.156-166
    • /
    • 2001
  • This work uses tensor calculus to derive a complete set of three-dimensional field equations well-suited for determining the behavior of thick shells of revolution having arbitrary curvature and variable thickness. The material is assumed to be homogeneous, isotropic and linearly elastic. The equations are expressed in terms of coordinates tangent and normal to the shell middle surface. The relationships are combined to yield equations of motion in terms of orthogonal displacement components taken in the meridional, normal and circumferential directions. Strain energy and kinetic energy functionals are also presented. The equations of motion and energy functionals may be used to determine the static or dynamic displacements and stresses in shells of revolution, including free and forced vibration and wave propagation.

  • PDF

한대의 LSV 를 이용한 3 차원 진동측정방법 (Three-dimensional vibration measurement algorithm using one laser scanning vibrometer)

  • 김동규;송하준;박기환
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2012년도 춘계학술대회 논문집
    • /
    • pp.935-939
    • /
    • 2012
  • 3D vibration measurement is achieved using one laser scanning vibrometer(LSV) and Laser scanner(LS) by moving the LSV to three arbitrarily locations from the principle that vibration analysis based on the frequency domain is independent of the vibration signal based on time domain. The proposed system has the same effect as using three sets of LSVs. It has an advantage of reducing equipment costs. Analytical approach of obtaining in-plane and out-of-plane vibration of surface is introduced using geometrical relations between three LSV coordinates and vibration measured at three different locations.

  • PDF

Three-dimensional analysis of the natural vibration of the three-layered hollow sphere with middle layer made of FGM

  • Akbarov, Surkay D.;Guliyev, Hatam H.;Yahnioglu, Nazmiye
    • Structural Engineering and Mechanics
    • /
    • 제61권5호
    • /
    • pp.563-576
    • /
    • 2017
  • This paper is a continuation of the investigations started in the paper by Akbarov, S.D., Guliyev, H.H and Yahnioglu, N. (2016) "Natural vibration of the three-layered solid sphere with middle layer made of FGM: three-dimensional approach", Structural Engineering and Mechanics, 57(2), 239-263, to the case where the three-layered sphere is a hollow one. Three-dimensional exact field equations of elastodynamics are employed for investigation and the discrete-analytical method is employed for solution of the corresponding eigenvalue problem. The FGM is modelled as inhomogeneous for which the modulus of elasticity, Poison's ratio and density vary continuously through the inward radial direction according to power law distribution. Numerical results on the natural frequencies are presented and discussed. These results are also compared with the corresponding ones obtained in the previous paper by the authors. In particular, it is established that for certain harmonics and for roots of certain order, the values of the natural frequency obtained for the hollow sphere can be greater (or less) than those obtained for the solid sphere.

V노치 및 예리한 균열을 갖는 N 다변형 단면 입체 실린더의 3차원 진동해석 (Three-Dimensional Vibration Analysis of Solid Cylinders of N-Sided Polygonal Cross-Section Having V-notches or Sharp Cracks)

  • 김주우
    • 한국강구조학회 논문집
    • /
    • 제21권4호
    • /
    • pp.433-442
    • /
    • 2009
  • 본 연구는 V노치 또는 예리한 균열이 존재하는 N 다변형 단면 입체 실린더에 대한 새로운 3차원 진동 데이터를 제시한다. 본 논문에서는 수학적으로 완전한 대수삼각다항식과 V노치 선단을 따라 존재하는 3차원 응력특이도를 명확히 다루는 허용에지함수와 함께 Ritz방법이 적용된다. 응력특이도를 포함하는 다변형 입체 실린더의 정확한 고유진동수 및 모드형상을 얻기 위해서는 에지함수가 필요하다는 것이 수렴도 분석을 통하여 입증된다.

광산 발파 시 인근지역에 미치는 발파영향에 대한 환경적 접근 (Environmental Approach to Blasting Effect on the Surrounding Area when the Mine Blasting)

  • 정병훈;이승호
    • 한국지반환경공학회 논문집
    • /
    • 제16권12호
    • /
    • pp.5-12
    • /
    • 2015
  • 발파소음은 충격음이기 때문에 인체에 갑작스런 충격을 주며, 발파진동과 같은 경우에는 지반을 따라 진동이 이동하여 인근 주변의 노화된 건물, 가축과 인체에도 큰 피해를 끼칠 수 있다. 본 연구에서는 광산 굴착 시 발생하는 발파영향이 인근지역에 미치는 영향에 대하여 분석하였다. 연구대상 지역의 지반현황을 파악하기 위해 지질조사, 현장시험과 실내시험 등의 지반조사를 수행하였다. 발파진동소음에 대해서는 국내 외 적용사례와 각 기관별 허용기준을 비교하여 현장조건에 가장 적합한 기준을 설정하였다. 발파영향을 검토하기 위해 발파진동 추정 식은 현장에서 시험발파를 수행하여 측정된 발파진동 값을 활용하였다. 발파진동 추정 식을 활용한 영향원의 검토는 발파지점을 보안물건(농장, 민가 등)으로부터 최단거리로 정하여 보안물건에 미치는 영향을 검토하였다. 또한 3차원 수치해석을 수행하여 발파진동 영향검토를 수행하였다. 3차원 수치해석은 동적 발파하중에 대한 구조물의 거동을 해석하기 위해 시간이력해석을 수행하였으며, 3방향에 대한 발파진동 값을 구하였다. 시험발파에 따른 발파진동 추정 식을 이용한 발파진동 영향원 검토 결과와 발파영향에 대한 3차원 수치해석 값을 비교 분석한 결과, 유사한 결과 수치를 확인하였다.

A new three-dimensional model for free vibration analysis of functionally graded nanoplates resting on an elastic foundation

  • Mahsa Najafi;Isa Ahmadi;Vladimir Sladek
    • Steel and Composite Structures
    • /
    • 제52권3호
    • /
    • pp.273-291
    • /
    • 2024
  • This paper presents a three-dimensional displacement-based formulation to investigate the free vibration of functionally graded nanoplates resting on a Winkler-Pasternak foundation based on the nonlocal elasticity theory. The material properties of the FG nanoplate are considered to vary continuously through the thickness of the nanoplate according to the power-law distribution model. A general three-dimensional displacement field is considered for the plate, which takes into account the out-of-plane strains of the plate as well as the in-plane strains. Unlike the shear deformation theories, in the present formulation, no predetermined form for the distribution of displacements and transverse strains is considered. The equations of motion for functionally graded nanoplate are derived based on Hamilton's principle. The solution is obtained for simply-supported nanoplate, and the predicted results for natural frequencies are compared with the predictions of shear deformation theories which are available in the literature. The predictions of the present theory are discussed in detail to investigate the effects of power-law index, length-to-thickness ratio, mode numbers and the elastic foundation on the dynamic behavior of the functionally graded nanoplate. The present study presents a three-dimensional solution that is able to determine more accurate results in predicting of the natural frequencies of flexural and thickness modes of nanoplates. The effects of parameters that play a key role in the analysis and mechanical design of functionally graded nanoplates are investigated.