• Title/Summary/Keyword: Three-dimensional Structural Analysis

Search Result 882, Processing Time 0.03 seconds

Structural Analysis of Tunnel Structures by Two and Three Dimensional Modeling (2차원 및 3차원 모델링에 의한 터널구조물의 구조해석)

  • Kim, Rae-Hyun;Chung, Jae-Hoon;Yhim, Sung-Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.3
    • /
    • pp.97-102
    • /
    • 2002
  • Two dimensional Analysis has been applied to most of tunnel lining design in these days. Two dimensional analysis uses beam or curved beam element for finite element method. But because the behaviors of tunnel concrete lining structure is near to shell, it is required to model the tunnel lining as shell structure for safety design of tunnel lining structure. In this paper, two dimensional analysis by beam element and the three dimensional analysis by shell element of tunnel concrete lining are studied, in which 3 type of tunnel lining and lateral pressure factors are considered. As results of the study, three dimensional analyses of the behavior of tunnel concrete lining structure considering lateral pressure factor shows that the moment of three dimensional analysis is greater than those of two dimensional analysis. The results shows that three dimensional analysis is necessary for safety design of tunnel lining.

Evaluation of Safety by Structural Analysis of Traditional Wooden Building (전통 목조 건축물의 구조해석에 의한 안전성 평가)

  • Jo, Sung-San;Kim, Hyong-Kee;Park, Bok-Man
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.4
    • /
    • pp.149-158
    • /
    • 2005
  • In order to grasp and evaluate the characteristics and the safety of traditional wooden building, we select one of the representative traditional wooden building, Buseoksa Muryangsujeon in this study. After the two and three-dimensional structural analysis of this building are performed, the results are compared and analyzed. Following main conclusion are obtained: 1) By comparison between the results of two and three-dimensional structural analysis, they show that the exterior members of this building tend to transfer more load in the three-dimensional analysis. 2) The result of three-dimensional structural analysis shows that the every member stress of Buseoksa Muryangsujeon except Chobang and Jangyon is below allowable stress. 3) For exact modelling of joints of members in traditional wooden building such as Gongpo, it is necessary to accumulate and analyze the technical data through structural test and systematic analysis study.

DEVELOPMENT OF AN IMPROVED THREE-DIMENSIONAL STATIC AND DYNAMIC STRUCTURAL ANALYSIS BASED ON FETI-LOCAL METHOD WITH PENALTY TERM

  • KIM, SEIL;JOO, HYUNSHIG;CHO, HAESEONG;SHIN, SANGJOON
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.21 no.3
    • /
    • pp.125-142
    • /
    • 2017
  • In this paper, development of the three-dimensional structural analysis is performed by applying FETI-local method. In the FETI-local method, the penalty term is added as a preconditioner. The OPT-DKT shell element is used in the present structural analysis. Newmark-${\beta}$ method is employed to conduct the dynamic analysis. The three-dimensional FETI-local static structural analysis is conducted. The contour and the displacement of the results are compared following the different number of sub-domains. The computational time and memory usage are compared with respect to the number of CPUs used. The three-dimensional dynamic structural analysis is conducted while applying FETI-local method. The present results show appropriate scalability in terms of the computational time and memory usage. It is expected to improve the computational efficiency by combining the advantages of the original FETI method, i.e., FETI-mixed using the mixed local-global Lagrange multiplier.

Three-dimensional structural health monitoring based on multiscale cross-sample entropy

  • Lin, Tzu Kang;Tseng, Tzu Chi;Lainez, Ana G.
    • Earthquakes and Structures
    • /
    • v.12 no.6
    • /
    • pp.673-687
    • /
    • 2017
  • A three-dimensional; structural health monitoring; vertical; planar; cross-sample entropy; multiscaleA three-dimensional structural health monitoring (SHM) system based on multiscale entropy (MSE) and multiscale cross-sample entropy (MSCE) is proposed in this paper. The damage condition of a structure is rapidly screened through MSE analysis by measuring the ambient vibration signal on the roof of the structure. Subsequently, the vertical damage location is evaluated by analyzing individual signals on different floors through vertical MSCE analysis. The results are quantified using the vertical damage index (DI). Planar MSCE analysis is applied to detect the damage orientation of damaged floors by analyzing the biaxial signals in four directions on each damaged floor. The results are physically quantified using the planar DI. With progressive vertical and planar analysis methods, the damaged floors and damage locations can be accurately and efficiently diagnosed. To demonstrate the performance of the proposed system, performance evaluation was conducted on a three-dimensional seven-story steel structure. According to the results, the damage condition and elevation were reliably detected. Moreover, the damage location was efficiently quantified by the DI. Average accuracy rates of 93% (vertical) and 91% (planar) were achieved through the proposed DI method. A reference measurement of the current stage can initially launch the SHM system; therefore, structural damage can be reliably detected after major earthquakes.

A Study on the Design of Three-Dimensional Bending Machine (3차원 Bending Machine 설계에 관한 연구)

  • Lee, Choon-Man;Lim, Sang-Heon;Park, Dong-Keun
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1852-1857
    • /
    • 2003
  • This study is concerned about the development of three-dimensional bending machine for heat exchanger. Recently, three-dimensional bending is required for various heat exchanger. The purpose of this study is design of three-dimensional bending machine by analysis of bending process and structural analysis simulation. The analysis is carried out by FEM simulation using DEFORM and CATIA V5 software. The copper-tube is modeled by shell elements and the machine is modeled by placing proper shell and solid finite elements and fictitious mass properties to represent the real one. The final results of analysis are applied to the design of three-dimensional bending machine and the machine is successfully developed.

  • PDF

Three-Dimensional Dynamic Analysis of Underground Openings Subjected to Explosive Loadings (폭발하중에 대한 지하공동구조체의 3차원 공적 유한요소해석)

  • 김선훈;김진웅;김광진
    • Computational Structural Engineering
    • /
    • v.10 no.2
    • /
    • pp.171-178
    • /
    • 1997
  • Three-dimensional dynamic analyses of underground openings subjected to explosive loadings are carried out. Dynamic analyses consist of two steps; one-dimensional source calculation and three-dimensional tunnel analysis. One-dimensional source calculation includes explosive charge and the free field surrounding rock. The input pressure time history for three-dimensional tunnel analysis is obtained from the companion one-dimensional source calculation. The computer program MPDAP-3D incorporated this analysis capability. It is shown that the computer program is a useful tool for the analysis of the structural safety evaluation of underground openings during construction by drill and blasting method.

  • PDF

Analysis of PSC Box Girder Anchorage Zone using FEM and 2D SUB-3D STM Approach (유한요소법 및 유사 3 차원 스트릿-타이 모델 방법을 이용한 PSC 박스거더 정착부의 해석)

  • Yun, Young-Mook;Kim, Seung-Eock;Oh, Jin-Woo;Park, Jung-Woong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.4 no.2
    • /
    • pp.113-129
    • /
    • 2000
  • This study evaluates the behavior and strength of an anchorage zone of the prestressed concrete box girder bridge on the Kyungboo highway railroad using the 2D SUB-3D STM approach and a linear elastic finite element analysis. The 2D SUB-3D STM approach utilizes several two-dimensional sub strut-tie models that represent the compressive and tensile stress flows of each projected plane of the three-dimensional structural concrete in the selection of a three dimensional strut-tie model, evaluation of the effective strengths of the concrete struts, and verification of the geometric compatibility condition and bearing capacity of the critical nodal zones in the selected three-dimensional strut-tie model. The finite element analysis uses an 8-node brick element and the longitudinal prestressing force is considered as the equivalent nodal force. Analysis results show that the 2D SUB-3D STM approach and linear elastic finite element method can be effectively applied to the analysis and design of three-dimensional structural concrete including a prestressed concrete box girder anchorage zone.

  • PDF

ANALYSIS OF MULTISTORY BUILDING STRUCTURES WITH FLEXIBLE FLOOR DIAPHRAGMS (바닥판의 면내 변형을 고려한 건축구조불의 해석)

  • 이동근;문성권
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1988.10a
    • /
    • pp.13-17
    • /
    • 1988
  • An efficient model for three-dimensional analysis of multistory structures with flexible floor diaphragms is proposed in this paper. Three-dimensional analysis of a building structure using a finite element model requires tedious input data preparation, longer computation time, and larger computer memory. The model proposed in this study is developed by assembling a series of two-dimensional resisting systems and is considered to overcome the shortcomings of a three-dimensional finite element model without deteriorating the accuracy of analysis results. Static and dynamic analysis results obtained using the proposed model are in excellent agreements to those obtained using three-dimensional finite element models in terms of displacements, periods, mode shapes.

  • PDF

Analysis of the J-integral for Two-dimensional and Three-dimensional Crack Configurations in Welds of Steel Structure (강구조물 응접접합부의 2차원 및 3차원 균열에 대한 J-적분 해석)

  • 이진형;장경호
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.270-277
    • /
    • 2004
  • In this paper, path-independent values of the J-integral in the fininte element context for arbitrary two-dimensional and three-dimensional crack configurations in welds are presented. For the fracture mechanics analysis of cracks in welds, residual stress analysis and fracture analysis must be performed simultaneously. In the analysis of cracked bodies containing residual stress, the usual domain integral formulation results in path-dependent values of the J-integral. This paper discusses modifications of the conventional J-integral that yield path independence in the presence of residual stress generated by welding. The residual stress problem is treated as an initial strain problem and the J-integral modified for this class of problem is used. And a finite element program which can evaluate the J-integral for cracks in two-dimensional and three-dimensional residual stress bearing bodies is developed using the modified J-integral definition. The situation when residual stress only is present is examed as is the case when mechanical stresses are applied in conjunction with a residual stress field.

  • PDF

SEISMIC RESPONSE OF MULTISTORY BUILDING STRUCTURES WITH FLEXIBLE FLOOR DIAPHRNGMS

  • Lee, Dong-Guen;Moon, Sung-Kwon
    • Computational Structural Engineering
    • /
    • v.2 no.1
    • /
    • pp.47-53
    • /
    • 1989
  • An efficient model for three-dimensional analysis of multistory structures with flexible floor diaphrgms is proposed in this paper. Three-dimensional analysis of a building structure using a finite element model requires tedious input data preparation, longer computation time, and larger computer memory. The model proposed in this study is developed by assembling a series of two-dimensional resisting systems and is considered to overcome the shortcomings of a three-dimensional finite element model without deteriorating the accuracy of analysis results. Static and dynamic analysis results obtained using the proposed model are in excellent agreement with those obtained using three-dimensional finite element models in terms of displacement, periods, and mode shapes. Effects of floor diaphragm flexibility on seismic response of multistory building structures are investigated.

  • PDF