• Title/Summary/Keyword: Three-dimensional Motion Analysis

Search Result 536, Processing Time 0.034 seconds

Flow Analysis Using 1 and 3 Dimensional Hybrid Mesh For Ultra-High Speed Vehicle Inside A Long Distance Tunnel (1-3차원 혼합격자를 이용한 장거리 터널 내 고속 운송체 유동해석)

  • Kim, Tae-Kyung;Choi, Joong-Keun;Kwon, Hyeok-Bin;Kim, Kyu-Hong
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.107-118
    • /
    • 2011
  • This paper performs flow analysis of ultra-high speed vehicle inside the long distance tunnel. One and three dimensional hybrid mesh was used for describing moving motion and flow analysis of an vehicle inside a long distance tunnel which over 20 km. Flow analysis and aerodynamic drag measuring were performed by three dimensional mesh: around vehicle, and pressure waves of a tunnel was measured by one dimensional mesh: the other region where rare changing of flow pattern.

  • PDF

Seismic fragility assessments of fill slopes in South Korea using finite element simulations

  • Dung T.P. Tran;Youngkyu Cho;Hwanwoo Seo;Byungmin Kim
    • Geomechanics and Engineering
    • /
    • v.34 no.4
    • /
    • pp.341-380
    • /
    • 2023
  • This study evaluates the seismic fragilities in fill slopes in South Korea through parametric finite element analyses that have been barely investigated thus far. We consider three slope geometries for a slope of height 10 m and three slope angles, and two soil types, namely frictional and frictionless, associated with two soil states, loose and dense for frictional soils and soft and stiff for frictionless soils. The input ground motions accounting for four site conditions in South Korea are obtained from one-dimensional site response analyses. By comparing the numerical modeling of slopes using PLAXIS2D against the previous studies, we compiled suites of the maximum permanent slope displacement (Dmax) against two ground motion parameters, namely, peak ground acceleration (PGA) and Arias Intensity (IA). A probabilistic seismic demand model is adopted to compute the probabilities of exceeding three limit states (minor, moderate, and extensive). We propose multiple seismic fragility curves as functions of a single ground motion parameter and numerous seismic fragility surfaces as functions of two ground motion parameters. The results show that soil type, slope angle, and input ground motion influence these probabilities, and are expected to help regional authorities and engineers assess the seismic fragility of fill slopes in the road systems in South Korea.

A Position based Kinematic Method for the Analysis of Human Gait

  • Choi Ahn Ryul;Rim Yong Hoon;Kim Youn Soo;Mun Joung Hwan
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.10
    • /
    • pp.1919-1931
    • /
    • 2005
  • Human joint motion can be kinematically described in three planes, typically the frontal, sagittal, and transverse, and related to experimentally measured data. The selection of reference systems is a prerequisite for accurate kinematic analysis and resulting development of the equations of motion. Moreover, the development of analysis techniques for the minimization of errors, due to skin movement or body deformation, during experiments involving human locomotion is a critically important step, without which accurate results in this type of experiment are an impossibility. The traditional kinematic analysis method is the Angular-based method (ABM), which utilizes the Euler angle or the Bryant angle. However, this analysis method tends to increase cumulative errors due to skin movement. Therefore, the objective of this study was to propose a new kinematic analysis method, Position-based method (PBM), which directly applies position displacement data to represent locomotion. The PBM presented here was designed to minimize cumulative errors via considerations of angle changes and translational motion between markers occurring due to skin movements. In order to verify the efficacy and accuracy of the developed PBM, the mean value of joint dislocation at the knee during one gait cycle and the pattern of three dimensional translation motion of the tibiofemoral joint at the knee, in both flexion and extension, were accessed via ABM and via new method, PBM, with a Local Reference system (LRS) and Segmental Reference system (SRS), and then the data were compared between the two techniques. Our results indicate that the proposed PBM resulted in improved accuracy in terms of motion analysis, as compared to ABM, with the LRS and SRS.

Comparison of uniform and spatially varying ground motion effects on the stochastic response of fluid-structure interaction systems

  • Bilici, Yasemin;Bayraktar, Alemdar;Adanur, Suleyman
    • Structural Engineering and Mechanics
    • /
    • v.33 no.4
    • /
    • pp.407-428
    • /
    • 2009
  • The effects of the uniform and spatially varying ground motions on the stochastic response of fluid-structure interaction system during an earthquake are investigated by using the displacement based fluid finite elements in this paper. For this purpose, variable-number-nodes two-dimensional fluid finite elements based on the Lagrangian approach is programmed in FORTRAN language and incorporated into a general-purpose computer program SVEM, which is used for stochastic dynamic analysis of solid systems under spatially varying earthquake ground motion. The spatially varying earthquake ground motion model includes wave-passage, incoherence and site-response effects. The effect of the wave-passage is considered by using various wave velocities. The incoherence effect is examined by considering the Harichandran-Vanmarcke and Luco-Wong coherency models. Homogeneous medium and firm soil types are selected for considering the site-response effect where the foundation supports are constructed. A concrete gravity dam is selected for numerical example. The S16E component recorded at Pacoima dam during the San Fernando Earthquake in 1971 is used as a ground motion. Three different analysis cases are considered for spatially varying ground motion. Displacements, stresses and hydrodynamic pressures occurring on the upstream face of the dam are calculated for each case and compare with those of uniform ground motion. It is concluded that spatially varying earthquake ground motions have important effects on the stochastic response of fluid-structure interaction systems.

An Experimental Analysis on the Motion Response of a Moored Semi-Submersible Platform in Regular Waves (계류된 반잠수식 시추선의 운동특성에 관한 실험적 고찰)

  • 홍사영;이판묵;홍도천
    • Journal of Ocean Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.59-70
    • /
    • 1988
  • This paper presents the results of motion tests of a moored semi-submersible platform in regular waves. To investigate the effects of mooring system on the motion characteristics, the tests were performed under the various mooring conditions in regular head and beam waves. Two types of mooring system were employed: one is composed of soft springs and the other is of chains. In the case of chains the pretensions were varied to investigate the dynamic effects of mooring forces as well as the motion responses of the semi-submersible. The motion responses and mooring tensions were measured and analyzed by the double amplitude method. The measured motion responses were also compared with the results of calculation from three-dimensional potential theory. Finally, the dynamic behaviors of mooring chains were studied.

  • PDF

Biomechanical Analysis of Soft Golf Swing (소프트 골프 스윙의 생체역학적 해석)

  • Kim Y.Y.;Kim S.H.;Kwon T.K.;Kim N.G.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.643-644
    • /
    • 2006
  • The purpose of this study is to experimentally analyze swing motion with soft golf clubs and compare with that with normal golf clubs. Soft golf is newly devised recreational sport based on golf but focus on the playability for the elderly. The subject fur the experiment performed swing motion using a normal golf club and a soft golf club in turn. The swing motion of the subjects was tracked using an opto-electric three-dimensional motion analysis system. The results were compared against those obtained with a normal golf club. The range of motion was analyzed along with top head speed for two cases. It was found that higher club head speed could be achieved with reduced range of motion at lumbar joint using soft golf club when compared against the swing using regular club. The lower range of motion fur lumbar bending means reduced risk of injury at the joint. So, it is projected that we can reduce the risk of injury with soft golf while maintaining the club head speed.

  • PDF

Effects of Visual Information on Joint Angular Velocity of Trunk and Lower Extremities in Sitting and Squat Motion

  • Bu, Kyoung hee;Oh, Tae young
    • The Journal of Korean Physical Therapy
    • /
    • v.27 no.2
    • /
    • pp.89-95
    • /
    • 2015
  • Purpose: The purpose of this study is to determine the effects of visual information on movement time and each angular velocity of trunk and lower extremity joints while healthy adults are in sitting and squat motion. Methods: Participants consisted of 20 healthy male and female adults; movement time and each angular velocity of trunk, pelvis, hip, knee and ankle of sitting and squat motion according to common vision, visual task and visual block were analyzed using a three dimensional motion analysis system. Results: Each angular velocity of the trunk, pelvis, hip, knee and ankle in phase 2 of the sitting showed significant difference according to the types of visual information (p<0.05). Movement time and each angular velocity of pelvis and hip in phase 2 of squat motion showed significant difference according to the types of visual information (p<0.05). According to the common vision, each angular velocity of knee and ankle in phase 1 was significantly fast in sitting (p<0.05). According to the common vision, each angular velocity of trunk, pelvis, hip, knee, and ankle in phase 2 was significantly fast in sitting (p<0.05). Conclusion: Visual information affects the angular velocity of the motion in a simple action such as sitting, and that in more complicated squat motion affects both the angular velocity and the movement time. In addition, according to the common vision, visual task and visual block, as angular velocities of all joints were faster in sitting than squat motion.

Kinematical Analysis of Tippelt Motion in Parallel Bars (평행봉 Tippelt 동작의 기술 분석)

  • Back, Hun-Sik;Kim, Min-Soo;Moon, Byoung-Yong;Back, Jin-Ho;Yoon, Chang-Sun
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.2
    • /
    • pp.167-176
    • /
    • 2007
  • The purpose of this study was to offer suitable model for performing Tippelt motion and data for training Tippelt motion through the quantitative kinematical analysis of Tippelt motion in parallel bars. The results of analysing kinematic variations through three-dimensional reflection analysis of three members of the national team as the objects of the study were shown as follows. 1. It seemed that the shoulder-joints which are stretched as much as possible affects the whole Tippelt motion while one is swinging downward. The time of process of the center of mass for the body reaching to the maximum flection point should be quick and body's moving from the vertical phase to the front direction should be controled as much as possible. 2. While one is swinging upward, the stability of flying motion could be made certain by the control of body's rapid moving to the front direction and stretching shoulder-joints and hip-joint to reverse direction. 3. While one is flying upward, the body should be erected quickly and lessening the angle of the hip-joint affects the elevation of flight. When the powerful counter turn motion is performed, the stable motion could be made. As a result of this study, It seems that sudden fall and the maximum stretch of shoulder-joints is important during performing Tippelt motion in parallel bars. Also, it concludes that the maximum bending of hip-joints at the starting point of upward swing, sudden stretch to the reverse direction of shoulder-joints and hip-joints when one is leaving bars, control of body's moving to the front direction, and lessening the angle of hip-joints at the flying phase is important.

Applied 2D equivalent linear program to analyze seismic ground motion: Real case study and parametric investigations

  • Soltani, Navid;Bagheripour, Mohammad Hossein
    • Geomechanics and Engineering
    • /
    • v.30 no.1
    • /
    • pp.1-10
    • /
    • 2022
  • Seismic ground response evaluation is one of the main issues in geotechnical earthquake engineering. These analyses are subsequently divided into one-, two- and three-dimensional methods, and each of which can perform in time or frequency domain. In this study, a novel approach is proposed to assess the seismic site response using two-dimensional transfer functions in frequency domain analysis. Using the proposed formulation, a program is written in MATLAB environment and then promoted utilizing the equivalent linear approach. The accuracy of the written program is evaluated by comparing the obtained results with those of actual recorded data in the Gilroy region during Loma Prieta (1989) and Coyote Lake (1979) earthquakes. In order to precise comparison, acceleration time histories, Fourier amplitude spectra and acceleration response spectra diagrams of calculated and recorded data are presented. The proposed 2D transfer function diagrams are also obtained using mentioned earthquakes which show the amount of amplification or attenuation of the input motion at different frequencies while passing through the soil layer. The results of the proposed method confirm its accuracy and efficiency to evaluate ground motion during earthquakes using two-dimensional model. Then, studies on irregular topographies are carried out, and diagrams of amplification factors are shown.