• Title/Summary/Keyword: Three-dimensional Motion Analysis

Search Result 538, Processing Time 0.025 seconds

Normal Glenohumeral and Scapulothoracic Movement at the Coronal Plane (정상인의 관상면에서의 관절와상완운동 및 견갑흉곽운동)

  • Rhee Yong-Girl;Vim Chang-Moo
    • Clinics in Shoulder and Elbow
    • /
    • v.1 no.1
    • /
    • pp.93-99
    • /
    • 1998
  • We measured the glenohumeral and scapulothoracic movements during abduction of the arm in the coronal plane with radiologic analysis in the 30 shoulders of normal male adults who were without pain, limitation of motion, and history of trauma. In the resting position, the glenoid cavity of the scapula faced somewhat superiorly in over 80 percents of the individuals, the mean superior tilting was 5.7 degrees. The mean total scapulothoracic movement was 65.8 degrees and the mean total glenohumeral movement was 106.8 degrees during abduction of arm in the coronal plane. The mean ratio of the glenohumeral movement to the scapulothoracic movement was 1.6 and this GH/ST ratio was decreased toward the extreme abduction. When the arm was abducted, external rotation of the humeral head occurred and this external rotation was increased smoothly during 0 degree through 90 degrees, but steeply above 90 degrees. The acromiohumeral interval was 10.9 mm at the resting positon, and this interval decreased during the arm abduction. The superior migration of the humeral head was 3.1 mm while abducting the arm. Our measurement of the relationships of glenohumeral and scapulothoracic movements at the coronal plane would be useful in the understandings of the biomechanics of shoulder, but further study would be required for the analysis of the three dimensional relationship because of the limitation of our two dimensional analysis.

  • PDF

Seismic performance assessment of single pipe piles using three-dimensional finite element modeling considering different parameters

  • Duaa Al-Jeznawi;Jitendra Khatti;Musab Aied Qissab Al-Janabi;Kamaldeep Singh Grover;Ismacahyadi Bagus Mohamed Jais;Bushra S Albusoda;Norazlan Khalid
    • Earthquakes and Structures
    • /
    • v.24 no.6
    • /
    • pp.455-475
    • /
    • 2023
  • The present study investigates the non-linear soil-pile interaction using three-dimensional (3D) non-linear finite element models. The numerical models were validated by using the results of extensive pile load and shaking table tests. The pile performance in liquefiable and non-liquefiable soil has been studied by analyzing the liquefaction ratio, pile lateral displacement (LD), pile bending moment (BM), and frictional resistance (FR) results. The pile models have been developed for the different ground conditions. The study reveals that the results obtained during the pile load test and shaking cycles have good agreement with the predicted pile and soil response. The soil density, peak ground acceleration (PGA), slenderness ratio (L/D), and soil condition (i.e., dry and saturated) are considered during modeling. Four ground motions are used for the non-linear time history analyses. Consequently, design charts are proposed depended on the analysis results to be used for design practice. Eleven models have been used to validate the capability of these charts to capture the soil-pile response under different seismic intensities. The results of the present study demonstrate that L/D ratio slightly affects the lateral displacement when compared with other parameters. Also, it has been observed that the increasing in PGA and decreasing L/D decreases the excess pore water pressure ratio; i.e., increasing PGA from 0.1 g to 0.82 g of loose sand model, decrease the liquefaction ratio by about 50%, and increasing L/D from 15 to 75 of the similar models (under Kobe earthquake), increase this ratio by about 30%. This study reveals that the lateral displacement increases nonlinearly under both dry and saturated conditions as the PGA increases. Similarly, it is observed that the BM increases under both dry and saturated states as the L/D ratio increases. Regarding the acceleration histories, the pile BM was reduced by reducing the acceleration intensity. Hence, the pile BM decreased to about 31% when the applied ground motion switched from Kobe (PGA=0.82 g) to Ali Algharbi (PGA=0.10 g). This study reveals that the soil conditions affect the relationship pattern between the FR and the PGA. Also, this research could be helpful in understanding the threat of earthquakes in different ground characteristics.

A study on the camera working of 3D animation based on applied media aesthetic approach - Based on the Herbert Gettl's theory - (영상미학적 접근의 3D 애니메이션 카메라 워킹 연구 - 허버트 제틀의 이론을 중심으로 -)

  • Joo, Kwang-Myung;Oh, Byung-Keun
    • Archives of design research
    • /
    • v.18 no.3 s.61
    • /
    • pp.209-218
    • /
    • 2005
  • Consciously or not, producers have to make many aesthetic choices in creative process of video production. If there are general acceptable aesthetic principles to make right choice it would be guideline of aesthetic decision to somewhat reduce mistakes and errors in the process. This paper proposes a theoretical approach on establishing the media aesthetic principle of 3D animation camera working, which is the most suitable for animation production context. We describe the Herbert Zettl's applied media aesthetics related directly to the camera, which is about the two-Dimensional field focusing on aspect radio and forces within the screen, three-dimensional field focusing on depth, volume, and four-dimensional field focusing on time and motion. In order to have theoretical approach we made an analysis on comparing a camera working of movie with 3D computer animation's one, and reconstructed these basic principles to be suited for the 3D animation production. When applied media aesthetics of the traditional camera working are applied to the 3D animation production, it could be an efficient guideline for it. Futhermore, if we develop the research for the relationship with various visual languages with the basis of these principles, the theory of creative picture composition method for the 3D animation production will be logically and systematically established.

  • PDF

Ergonomic Evaluation of Refrigerator Design (냉장고 디자인의 인간공학적 평가)

  • 박재희;황민철;박세진;김명석
    • Archives of design research
    • /
    • v.14
    • /
    • pp.1-7
    • /
    • 1996
  • Designers often hesitate to decide the shape, size, and layout of a product. Though ergonomic principles and data are absolutely needed in this process, they don have enough guidelines to refer. For the refrigerator designers, they also are not convinced of their decision: the vertical position of the freezing and refrigerating rooms, the height of shelves, the shape of door-handle, etc. To support the refrigerator design, we applied several ergonomic methods to the evaluation of refrigerator. EMG was measured to evaluate the load of users lumbar muscle. Based upon the experimental EMG data, we developed a model to estimate the relative load corresponding to the height of refrigerator shelves. Two different layouts of a refrigerator, R/F and F/R styles, were compared with the model. A three-dimensional motion analysis method was used to evaluate the users motion of using a refrigerator. Ten door-handles with the different shapes and positions were evaluated by tracking the rotations of the users arm. Video protocol analysis was used to evaluate the user interface of a control panel in a refrigerator. Finally, we suggested several ergonomic design guidelines based on the facts found in this research and the anthropometric data of the Korean adults. The results of this study can be applied to the ergonomic design of refrigerators

  • PDF

Explicit Transient Simulation of SH-waves Using a Spectral Element Method (스펙트럴 요소법을 이용한 SH파 전파의 외연적 시간이력해석)

  • Youn, Seungwook;Kang, Jun Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.2
    • /
    • pp.87-95
    • /
    • 2018
  • This paper introduces a new explicit spectral element method for the simulation of SH-waves in semi-infinite domains. To simulate the wave motion in unbounded domains, it is necessary to reduce the infinite extent to a finite computational domain of interest. To prevent the wave reflection from the trunctated boundaries, perfectly matched layer(PML) wave-absorbing boundary is introduced. The forward problem for simulating SH-waves in PML-truncated domains can be formulated as second-order PDEs. The second-order semi-discrete form of the governing PDEs is constructed by using a mixed spectral elements with Legendre-gauss-Lobatto quadrature method, which results in a diagonalized mass matrix. Then the second-order semi-discrete form is transformed to a first-order, whose solutions are calculated by the fourth-order Runge-Kutta method. Numerical examples showed that solutions of SH-wave in the two-dimensional analysis domain resulted in stable and accurate, and reflections from truncated boundaries could be reduced by using PML boundaries. Elastic wave propagation analysis using explicit time integration method may be apt for solving larger domain problems such as three-dimensional elastic wave problem more efficiently.

Free Vibration Analysis of a Degenerated Timoshenko Beam Including the Effect of Shear Deformation and Rotatory Inertia (전단변형(剪斷變形)과 회전관성(回轉慣性)을 고려(考慮)한 Timoshenko 보의 자유진동(自由振動) 해석(解析))

  • Byun, Dong Kyun;Shin, Young Shik;Jang, Jong Tak
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.3 no.4
    • /
    • pp.109-122
    • /
    • 1983
  • An accurate thick beam element (TB4) which includes the effects of the shear deformation and rotatory inertia has been degenerated from the three dimensional continuum by employing the Timoshenko beam assumptions. The proposed TB4 element has four nodes and two degrees of freedom at each node, totally eight degrees of freedom. The transverse deflection W and plane rotation ${\theta}$ with the cubic interpolation functions are selected as nodal variables. The element characteristics are formulated by discretizing the beam equations of motion, using the Galerkin weighted residual method, and are numerically integrated by the reduced shear integration technique, using the three-point Gauss quadrature with the various shear coefficients. Several numerical examples are analyzed to demonstrate the accuracy and the monotonic convergence behavior of the proposed TB4 beam element. The result indicates that the TB4 element shows the more excellent performance and the monotonic convergence behavior than the other existing Timoshenko beam type elements for the whole range of the beam aspect ratios, in both static and free vibration analyses.

  • PDF

A Study on the Slowly Varying Wave Drift Force Acting on a Semi-Submersible Platform in Waves (반잠수식 시추선에 작용하는 장주기 표류력에 관한 연구)

  • S.Y.,Hong;P.M.,Lee;D.C.,Hong
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.26 no.2
    • /
    • pp.49-63
    • /
    • 1989
  • Wave drift forces which are small in magnitudes compared to the first order wave exciting forces can cause very large motion of a vessel in waves. In this paper a theoretical and experimental analysis is made of the mean and slowly varying wave dirft forces on the semi-submersible platform. Theoretical calculations are performed by using near field method with three dimensional diffraction theory and model tests are carried out in regular and irregular waves with a 1/60 semi model. Test results are compared with theoretical calculations and the mooring spring effects in the test are discussed.

  • PDF

The Effects of Different Angles of Wedged Insoles on Knee Varus Torque in Healthy Subjects

  • Jung, Do-Young;Kwon, Oh-Yun;Yi, Chung-Hwi;Kim, Young-Ho;Kim, Jang-Hwan
    • Physical Therapy Korea
    • /
    • v.11 no.4
    • /
    • pp.31-41
    • /
    • 2004
  • The purpose of this study was to examine the effect of the angle of a wedged insole on knee varus torque during walking. Fifteen healthy subjects were recruited. Knee varus torque was measured using three-dimensional motion analysis (Elite). Knee varus torque was normalized to gait cycle (0%: initial contact; 100%: ipsilateral initial contact) and stance phase (0%: initial contact; 100%: ipsilateral toe off). The average peaks of knee varus torque during the stance phase of the gait cycle according to the different insole angles (10 or 15 degrees) were compared using one-way ANOVA with repeated measures. The results showed that in the early stance phase, the average peak knee varus torque increased significantly for both the medial 10 and 15 degree wedged insole conditions and decreased significantly for both the lateral 10 and 15 degree wedged insole conditions as compared with no insole (p<.05). However, there were no significant differences between the 10 and 15 degree wedged insole conditions with either the medial or lateral wedged insole (p>.05). In the late stance phase, the average peak knee varus torque increased significantly for the medial 10 and 15 degree wedged insole conditions (p<.05), but not for the lateral 10 and 15 degree wedged insole conditions as compared with no insole (p>.05). We suggest that these results may be beneficial for manufacturing foot orthotic devices, such as wedged insoles, to control medial and lateral compartment forces in the knee varus-valgus deformity. Further studies of the effects of wedged insole angle on knee varus torque in patients with medial-lateral knee osteoarthritis are needed.

  • PDF

The Kinematic Analysis of the Hand spring forward and Salto forward straight with 3/2 Turn on the Vault (도마 손 짚고 몸펴 앞 공중 돌아 540도 비틀기의 운동학적 분석)

  • Yeo, Hong-Chul;Yoon, Hee-Joong;Ryu, Ji-Seon;Jung, Chul-Jung
    • Korean Journal of Applied Biomechanics
    • /
    • v.13 no.3
    • /
    • pp.47-65
    • /
    • 2003
  • The purpose of this study was to investigate the differences of the kinematical and the kinetical factors that calculated from preflight to postflight of salto forward straight 3/2 turn motion between skitters and less-skitters. four S-VHS video cameras operating at 60Hz were used to record the performances. five elite male gymnasts were participated in this study as subjects. three-dimensional coordinates of 20 body landmarks during each trial were collected using a Direct Linear Transformation method. The digitized body landmarks were smoothed using a Butterworth second order with low pass digital filter and a cutoff frequency of 10Hz. 1. A skitter, got a high score for performance, showed shorter time and faster horizontal velocity than a less-skitter at the board contact. also, a skitter extended quickly his knee and hip joint after contacting board for preflight phase. 2. A skitter revealed faster time and horizontal velocity the vault from taking off board than a less-skiller. A skitter took a long time and high distance to get the vertical peak compared with a less-skiller. 3. For the second phase, a skitter, who executes the most optimal motions among the subjects, displayed a long flight time, a high height, and a far flight distance as well as maintaining consistent horizontal speed even at the peak of post flight. On the other side, a less-scorer displayed a slow vertical velocity, distance and a short time at the point of take-off from vault as well as low height at the peak of post flight.

Comparison between the Balance of Skilled and Less-Skilled Players during Successful and Failed Front Kick and Turning Side Kick Motions (태권도 품새 우수·비 우수선수 간 앞차고 몸돌아 옆차기의 성·패에 따른 균형성 비교)

  • Yoo, Si-Hyun;Ryu, Ji-Seon
    • Korean Journal of Applied Biomechanics
    • /
    • v.22 no.3
    • /
    • pp.285-293
    • /
    • 2012
  • The aim of this study is to identify the appropriate movement for maintaining postural balance during Front Kick and Turning Side Kick motions. To do so, ten Taekwondo athletes: five skilled players(S, body mass: $65.0{\pm}5.8kg$, height: $172.3{\pm}3.7cm$, age: $20.0{\pm}1.2yrs$, career: $9.0{\pm}1.9yrs$) and five less-skilled players(LS, body mass: $67.1{\pm}5.5kg$, height: $173.2{\pm}5.1cm$, age: $19.4{\pm}1.7yrs$, career: $9.6{\pm}1.7yrs$) participated in this study. A three-dimensional motion analysis was performed on the participants using eight infrared cameras and two force plate(sampling frequency of 200 Hz and 2000 Hz for S and LS players, respectively). The participants' motions were divided into: a front-kick phase(P1) and a turning-side-kick phase(P2). For P2(p<.05), the range and root mean square(RMS) of the ground reaction torque and the M-L mean velocity of COP were greater for LS than for S; similarly, for P2(p<.05), the M-L range, A-P range, and velocity of the COP were greater for LS than for S. Further, the M-L range and maximum velocity of the COP was greater for failure than for success(p<.05). The femoral biceps muscle for bending the knee joint was significantly stronger in S than in LS(p<.05). It is expected that these results will be useful in developing a training program for improving the balance and stability of Taekwondo poomsae athletes and improve their front-kick and turning-side-kick motions.