• Title/Summary/Keyword: Three-dimensional Motion Analysis

Search Result 538, Processing Time 0.028 seconds

Scenario-based seismic performance assessment of regular and irregular highway bridges under near-fault ground motions

  • Dolati, Abouzar;Taghikhany, Touraj;Khanmohammadi, Mohammad;Rahai, Alireza
    • Earthquakes and Structures
    • /
    • v.8 no.3
    • /
    • pp.573-589
    • /
    • 2015
  • In order to investigate the seismic behavior of highway bridges under near-fault earthquakes, a parametric study was conducted for different regular and irregular bridges. To this end, an existing regular viaduct Highway Bridge was used as a reference model and five irregular samples were generated by varying span length and pier height. The seismic response of the six highway bridges was evaluated by three dimensional non-linear response history analysis using an ensemble of far-fault and scenario-based near-fault records. In this regard, drift ratio, input and dissipated energy as well as damage index of bridges were compared under far- and near-fault motions. The results indicate that the drift ratio under near-fault motions, on the average, is 100% and 30% more than far-fault motions at DBE and MCE levels, respectively. The energy and damage index results demonstrate a dissipation of lower energy in piers and a significant increase of collapse risk, especially for irregular highway bridges, under near-fault ground motions.

Effects of Landing Tasks on the Anterior Cruciate Ligament Injury Risk Factors in Female Basketball Players (여자 농구 선수들의 착지 유형이 전방십자인대 손상위험 요인에 미치는 영향)

  • Lee, Gye-San;Lim, Bee-Oh
    • Korean Journal of Applied Biomechanics
    • /
    • v.24 no.4
    • /
    • pp.385-390
    • /
    • 2014
  • The purpose of this study was to investigate the effects of landing tasks on the anterior cruciate ligament (ACL) injury risk factors in female basketball players. Fifteen female basketball players performed a drop landing and a drop landing with a vertical jump on the 40 cm height box. Three-dimensional motion analysis system and ground reaction force system was used for calculate the ACL injury risk factors. Paired samples t-test with Bonfferoni correction were performed. The drop landing with a vertical jump had the higher knee flexion angle, peak knee varus moment, trunk flexion angle than a drop landing. However, the drop landing had the higher trunk rotation angle than a drop landing with a vertical jump. These results indicate that seemingly minor variations between drop landing and drop landing with a vertical jump may influence the ACL injury risk factors. Caution should be used when comparing studies using different landing tasks.

A Study on Grip Force and Angular Kinematics during Golf Putting Stroke (그립악력과 각운동학을 이용한 골프 퍼팅 분석)

  • Choi, Jin-Seung;Kim, Hyung-Sik;Lim, Young-Tae;Yi, Jeong-Han;Tack, Gye-Rae
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.3
    • /
    • pp.125-131
    • /
    • 2007
  • The purpose of this study was to evaluate the difference in grip force and angular kinematic variables between elite (handicap${\leq}2$) and novice golfers. Three-dimensional motion analysis system with synchronized grip force measurement system was used. The participants consisted of two groups based on their playing ability: 10 elite golfers and 10 novice golfers. Each subject performed 5 putting strokes at the distance of 1, 3, and 5m with randomly selected order. During entire putting phase, elite group showed relatively constant grip force but novice group showed continuously increasing grip force pattern. There existed a clear difference in the trajectory of shoulder line between two groups. As for novice group the rotational center did not converge into one point, for elite group the rotational center converged into precise single point. And there was a clear difference pattern in anterior-posterior directional movement at shoulder between two groups. These difference might be helpful for improving consistent putting skills.

Kinematic Analysis of the Technique for 500-m Speed Skaters in Curving

  • Song, Joo-Ho;Park, Jong-Chul;Kim, Jin-Sun
    • Korean Journal of Applied Biomechanics
    • /
    • v.28 no.2
    • /
    • pp.93-100
    • /
    • 2018
  • Objective: The purpose of this study is to analyze the kinematic characteristics of the national speed skaters in the curve phase of 500-m race. Method: Seven national skaters participated in the study. Race images were acquired using a high - speed camera, and the three-dimensional motion was analyzed. Results: For skaters, whose average velocity in the curve phase is high, the velocity of entry into the straight phase was also fast. The fast skaters showed a larger maximum angle of extension of the knee joints than the relatively slow skaters, and the trunk ROM was smaller. Fast skaters tended to match the timing of the movement of the lower limb with the pelvis, while slow skaters tended to rotate the left pelvis backward. The velocity of the curve phase did not show a clear relationship with stroke time, average trunk angle, and lap time. Conclusion: It is important to skate close to the inner line, keep the trunk ROM below 10 degrees, extend the knee angle to over 160 degrees, and match the movement of the pelvis and lower limb to accelerate in the curve phase. The average velocity of the curves was fast for many athletes, but the competition rankings were low. Therefore, it is possible to improve the performance by optimizing the start technique, the running characteristics of the straight phase, and the physical factors.

Analysis of Disc Degeneration in a Poroelastic Spinal Motion Segment FE Model (다공탄성체 척추운동분절 유한요소 모델을 이용한 추간판의 퇴화과정 분석)

  • Woo D.G.;Kim Y.E.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.248-251
    • /
    • 2005
  • To investigate the degeneration process in the intervertebral disc, a three dimensional (3D) poroelastic finite-element (FE) model was developed. Disc was modeled as two different regions, such as annulus modeled with fiber reinforced 20 node poroelastic ground matrix and nucleus having large porosity. Excess Von Mises stress in the disc element assumed to be a possible source of degeneration under compressive loading condition. Recursive calculation was continued until the desired convergence was attained by changing the permeability and porosity of those elements, which could be predicted from the previous iteration. The degenerated disc model showed that relatively small compressive stresses were generated in the nucleus elements compared to normal disc. Its distribution along the sagittal plane was matched well with a previously reported experimental result. Contrasts to this result, pore pressures in the nucleus were higher than those in the normal disc. Total stress indicated similar values for two different models. This new approach using poroelastic modeling could provide the explanation of the interaction between fluid and solid matrix in the disc during the degeneration process.

  • PDF

An Optimal Position and Orientation of Stereo Camera (스테레오 카메라의 최적 위치 및 방향)

  • Choi, Hyeung-Sik;Kim, Hwan-Sung;Shin, Hee-Young;Jung, Sung-Hun
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.3
    • /
    • pp.354-360
    • /
    • 2013
  • A stereo vision analysis was performed for motion and depth control of unmanned vehicles. In stereo vision, the depth information in three-dimensional coordinates can be obtained by triangulation after identifying points between the stereo image. However, there are always triangulation errors due to several reasons. Such errors in the vision triangulation can be alleviated by careful arrangement of the camera position and orientation. In this paper, an approach to the determination of the optimal position and orientation of camera is presented for unmanned vehicles.

The Rocking Response of Three Dimensional Rectangular Liquid Storage Tank (3차원 구형 액체 저장 Tank의 Rocking응답)

  • 김재관;박진용;진병무;조양희
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.1
    • /
    • pp.23-34
    • /
    • 1998
  • A dynamic fluid-structure-soil interaction analysis method is developed to investigate the effects of translational and/or rocking motions on the seismic response of flexible rectangular liquid storage tanks founded on the deformable ground. The governing equation for the dynamics of 3-D rectangular tanks subjected to the translational and/or rocking motion is abtained by applying Rayleigh-Ritz method. The dynamic stiffness matrices of a rigid rectangular foundation resting on the surface of a stratum overlaid bedrock are calculated by hyperelement method. The seismic responses of 3-D flexible tank model founded on the deformable ground is calculated by combining the governing equation for the fluid-tank system with the dynamic stiffness matrix of th rigid surface foundation.

  • PDF

Postural Control Strategies on Smart Phone use during Gait in Over 50-year-old Adults (50세 이상 성인의 보행 시 스마트폰 사용에 따른 자세 조절 전략)

  • Yu, Yeon Joo;Lee, Ki Kwang;Lee, Jung Ho;Kim, Suk Bum
    • Korean Journal of Applied Biomechanics
    • /
    • v.29 no.2
    • /
    • pp.71-77
    • /
    • 2019
  • Objective: The aim of this study was to investigate postural control strategies on smart phone use during gait in over 50-year-old adults. Method: 8 elderly subjects (age: $55.5{\pm}3.29yrs$, height: $159.75{\pm}4.20cm$, weight: $62.87{\pm}8.44kg$) and 10 young subjects (age: $23.8{\pm}3.19yrs$, height: $158.8{\pm}5.97cm$, weight: $53.6{\pm}5.6kg$) participated in the study. They walked at a comfortable pace in a gaitway of ~8 m while: 1) reading text on a smart phone, 2) typing text on a smart phone, or 3) walking without the use of a phone. Gait parameters and kinematic data were evaluated using a three-dimensional movement analysis system. Results: The participants read or wrote text messages they walked with: slower speed; lesser stride length and step width; greater flexion range of motion of the head; more flexion of the thorax in comparison with normal walking. Conclusion: Texting or reading message on a smart phone while walking may pose an additional risk to pedestrians' safety.

A parametric study on the free vibration of a functionally graded material circular plate with non-uniform thickness resting on a variable Pasternak foundation by differential quadrature method

  • Abdelbaki, Bassem M.;Ahmed, Mohamed E. Sayed;Al Kaisy, Ahmed M.
    • Coupled systems mechanics
    • /
    • v.11 no.4
    • /
    • pp.357-371
    • /
    • 2022
  • This paper presents a parametric study on the free vibration analysis of a functionally graded material (FGM) circular plate with non-uniform thickness resting on a variable Pasternak elastic foundation. The mechanical properties of the material vary in the transverse direction through the thickness of the plate according to the power-law distribution to represent the constituent components. The equation of motion of the circular plate has been carried out based on the classical plate theory (CPT), and the differential quadrature method (DQM) is employed to solve the governing equations as a semi-analytical method. The grid points are chosen based on Chebyshev-Gauss-Lobatto distribution to achieve acceptable convergence and better accuracy. The influence of geometric parameters, variable elastic foundation, and functionally graded variation for clamped and simply supported boundary conditions on the first three natural frequencies are investigated. Comparisons of results with similar studies in the literature have been presented and two-dimensional mode shapes for particular plates have been plotted to illustrate the effect of variable thickness profile.

Kinematical Analysis of the Back Somersault in Floor Exercise (마루운동 제자리 뒤공중돌기 동작의 운동학적 분석)

  • Chung, Nam-Ju
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.2
    • /
    • pp.157-166
    • /
    • 2007
  • This study was to compare the major kinematic factors between the success and failure group on performing the back somersault motion in floor exercise. Three gymnasts(height : $167.3{\pm}2.88cm$, age : $22.0{\pm}1.0years$, body weight : $64.4{\pm}2.3kg$) were participated in this study. The kinematic data was recorded at 60Hz with four digital video camera. Two successful motions and failure motions for each subject were selected for three dimensional analysis. 1. Success Trail It was appear that success trail was larger than failure group in projection velocity, but success trail was smaller than failure trail in projection angle. Also it was appear that success trail was longer than failure group in the time required. Hand segment velocity and maximum velocity in success trail were larger than those in failure trail, and this result was increasing the projection velocity and finally increasing the vertical height of center of mass. At the take-off(event 2), flection amount of hip and knee joint angle was contributed to the optimal condition for the take-off and at the peak point, hip and knee joint angle was maximum flexed for reducing the moment of inertia. Also in this point, upper extremities of success trail extended more than those of failure trail. in this base, success trail in upward phase(p3) 2. Failure Trail It was appear that failure trail was smaller than success trail in projection velocity, but failure trail was larger than success trail in projection angle. Also it was appear that failure trail was more short than success trail in the time required. Hand segment velocity and maximum velocity in failure trail were smaller than those in success trail, and this result was reducing the projection velocity and finally reducing the vertical high of center of mass. At the take-off(event 2), flection amount of hip and knee joint angle wasn't contributed to the optimal condition for the take-off and at the peak point, hip and knee joint angle wasn't maximum flexed for reducing the moment of inertia. Also in this point, upper extremities of failure trail didn't extended more than those of success trail.