• Title/Summary/Keyword: Three-dimensional Model

Search Result 4,691, Processing Time 0.032 seconds

Investigation of Subsurface Structure of Cheju Island by Gravity and Magnetic Methods (중력 및 자력 탐사에 의한 제주도 지질구조 연구)

  • Kwon, Byung-Doo;Lee, Heui-Soon;Jung, Gwi-Geum;Chung, Seung-Whan
    • Economic and Environmental Geology
    • /
    • v.28 no.4
    • /
    • pp.395-404
    • /
    • 1995
  • The geologic structure of the Cheju volcanic island has been investigated by analyzing the gravity and magnetic data. Bouguer gravity map shows apparent circular low anomalies at the central volacanic edifice, and the maximum difference of the anomaly values on the island appears to be 30 mgal. The subsurface structure of the island is modeled by three-dimensional depth inversion of gravity data by assuming the model consists of a stacked grid of rectangular prisms of volcanic rocks bounded below by basement rocks. The gravity modeling reveals that the interface between upper volvanic rocks and underlying basement warps downward under Mt. Halla with the maximum depth of 5 km. Magnetic data involve aeromagnetic and surface magnetic survey data. Both magnetic anomaly maps show characteristic features which resemble the typical pattern of total magnetic anomalies caused by a magnetic body magnetized in the direction of the geomagnetic field in the middle latitude region, though details of two maps are somewhat different. The reduced-to-pole magnetic anomaly maps reveal that main magnetic sources in the island are rift zones and the Halla volcanic edifice. The apparent magnetic boundaries inferred by the method of Cordell and Grauch (1985) are relatively well matched with known geologic boundaries such as that of Pyosunri basalt and Sihungri basalt which form the latest erupted masses. Inversion of aeromagnetic data was conducted with two variables: depth and susceptibility. The inversion results show high susceptibility bodies in rift zones along the long axis of the island, and at the central volcano. Depths to the basement are 1.5~3 km under the major axis, 1~1.5 km under the lava plateau and culminates at about 5 km under Mt. Halla. The prominent anomalies showing N-S trending appear in the eastern part of both gravity and magnetic maps. It is speculated that this trend may be associated with an undefined fault developed across the rift zones.

  • PDF

Evaluation of the Energy Dissipation Capacity of an Unstiffened Extended End-plate Connection (비보강 확장단부판 접합부의 에너지소산능력 평가)

  • Lee, Soo Kueon;Yang, Jae Guen
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.2
    • /
    • pp.243-250
    • /
    • 2015
  • An extended end-plate connection displays different behavioral properties and energy dissipation capacity based on the thickness and length of the end-plate comprising the connection in the form of a beam-to-column moment connection, the number and diameter of the high strength bolt, the gauge distance of the high strength bolt, and the size and length of the welds. Such extended end-plate is applied to beam-to-column connections in various geometric forms in the US and European regions. Currently in Korea, however, the extended end-plate beam-to-column connection is not actively applied due to the lack of proper design formulas, the evaluation of the energy dissipation capacity, and the provision of construction guidelines. Accordingly, this study was conducted to provide the basic data for the proposal of a prediction model of energy dissipation capacity by evaluating the energy dissipation capacity of unstiffened extended end-plate connections with relatively thin end plate thicknesses. To achieve this, a three-dimensional nonlinear finite element analysis has been conducted on unstiffened extended end-plate connections, with the thickness of the end plate as the set variable.

Analytical Study on the Prying Action Force and Axial Tensile Stiffness of High-Strength Bolts Used in an Unstiffened Extended End-Plate Connection (비보강 확장단부판 접합부에 체결된 고장력볼트의 지레작용력 및 축방향 인장강성에 대한 해석적 연구)

  • Kim, Hee Dong;Yang, Jae Guen;Lee, Hyung Dong
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.2
    • /
    • pp.251-260
    • /
    • 2015
  • The end plate connection is applied to beam-column moment connections in various forms. Such end plate connection displays changes in the behavioral characteristics, strength and stiffness, and energy dissipation capacity based on the thickness and length of the end plate, the number and diameter of the high strength bolt, the gauge distance of the high strength bolt, prying action force of the high strength bolt, and dimensions and length of the welds. Accordingly, this study has apprehended the axial tensile stiffness and prying action force of the high strength bolt connected on the tensile side based on the difference in thickness of the end plate, and was conducted to propose an analysis model for the prediction of such variables that affect the operating properties of the end plate. To achieve this, this study has conducted a three-dimensional non-linear finite-element analysis of the unstiffened expanding end plate connection by selecting only the thickness of the end plate as the variable.

Assessment of Radionuclide Deposition on Korean Urban Residential Area

  • Lee, Joeun;Han, Moon Hee;Kim, Eun Han;Lee, Cheol Woo;Jeong, Hae Sun
    • Journal of Radiation Protection and Research
    • /
    • v.45 no.3
    • /
    • pp.101-107
    • /
    • 2020
  • Background: An important lesson learned from the Fukushima accident is that the transition to the mid- and long-term phases from the emergency-response phase requires less than a year, which is not very long. It is necessary to know how much radioactive material has been deposited in an urban area to establish mid- and long-term countermeasures after a radioactive accident. Therefore, an urban deposition model that can indicate the site-specific characteristics must be developed. Materials and Methods: In this study, the generalized urban deposition velocity and the subsequent variation in radionuclide contamination were estimated based on the characteristics of the Korean urban environment. Furthermore, the application of the obtained generalized deposition velocity in a hypothetical scenario was investigated. Results and Discussion: The generalized deposition velocities of 137Cs, 106Ru, and 131I for each residence type were obtained using three-dimensional (3D) modeling. For all residence types, the deposition velocities of 131I are greater than those of 106Ru and 137Cs. In addition, we calculated the generalized deposition velocities for each residential types. Iodine was the most deposited nuclide during initial deposition. However, the concentration of iodine in urban environment drastically decreases owing to its relatively shorter half-life than 106Ru and 137Cs. Furthermore, the amount of radioactive material deposited in nonresidential areas, especially in parks and schools, is more than that deposited in residential areas. Conclusion: In this study, the generalized urban deposition velocities and the subsequent deposition changes were estimated for the Korean urban environment. The 3D modeling was performed for each type of urban residential area, and the average deposition velocity was obtained and applied to a hypothetical accident. Based on the estimated deposition velocities, the decision-making systems can be improved for responding to radioactive contamination in urban areas. Furthermore, this study can be useful to predict the radiological dose in case of large-scale urban contamination and can support decision-making for long-term measurement after nuclear accident.

An Implementation of Automatic Genre Classification System for Korean Traditional Music (한국 전통음악 (국악)에 대한 자동 장르 분류 시스템 구현)

  • Lee Kang-Kyu;Yoon Won-Jung;Park Kyu-Sik
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.1
    • /
    • pp.29-37
    • /
    • 2005
  • This paper proposes an automatic genre classification system for Korean traditional music. The Proposed system accepts and classifies queried input music as one of the six musical genres such as Royal Shrine Music, Classcal Chamber Music, Folk Song, Folk Music, Buddhist Music, Shamanist Music based on music contents. In general, content-based music genre classification consists of two stages - music feature vector extraction and Pattern classification. For feature extraction. the system extracts 58 dimensional feature vectors including spectral centroid, spectral rolloff and spectral flux based on STFT and also the coefficient domain features such as LPC, MFCC, and then these features are further optimized using SFS method. For Pattern or genre classification, k-NN, Gaussian, GMM and SVM algorithms are considered. In addition, the proposed system adopts MFC method to settle down the uncertainty problem of the system performance due to the different query Patterns (or portions). From the experimental results. we verify the successful genre classification performance over $97{\%}$ for both the k-NN and SVM classifier, however SVM classifier provides almost three times faster classification performance than the k-NN.

Study on 3D AR of Education Robot for NURI Process (누리과정에 적용할 교육로봇의 가상환경 3D AR 연구)

  • Park, Young-Suk;Park, Dea-Woo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.209-212
    • /
    • 2013
  • The Nuri process of emphasis by the Ministry of Education to promote is standardized curriculum at the national level for the education and care. It is to improve the quality of pre-school education and Ensure a fair starting line early in life and It emphasizes character education in all areas of the window. Nuri the process of development of a the insect robot for the Creativity education Increased the interesting and educational effects. Assembly and the effect on learning of educational content using a VR educational robot using the existing floor assembly using the online website to help assemble and learning raised. Order to take advantage of information technology in the information-based society requires the active interest and motivation in learning, creative learning toddlers learning robot are also needed. A three-dimensional model of the robot, and augmented by linking through the marker, the target marker and the camera relative to the coordinate system of augmented reality, seeking to convert the marker to be used in augmented reality marker patterns within a pre-defined patternto be able to make a decision on what of. The fusion of a smart education through training and reinforcement the educational assembly of the robot in the real world window that is represented by a virtual environment in this paper to present a new form of state-of-the-art smart training, you will want to lay the foundation of the nation through the early national talent nurturing talent.

  • PDF

A Study on the Using of BIM Data and Template for Construction Progress Management (건설공정관리를 위한 BIM데이터와 템플릿 활용 방안)

  • Oh, Kun-Soo;Park, So-Hyun;Song, Jung-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.8
    • /
    • pp.157-163
    • /
    • 2016
  • BIM is currently applied in some domestic construction firms, but it is not being actively utilized due to changes in working environments and qualms about new studies. In order to utilize a BIM model in the design phase, process information is needed during construction, but the input system and utilization method of the process information's state are not complete. Therefore, we propose a BIM template for construction progress management that can show basic BIM information as the construction progresses in an easy and convenient way. This method will facilitate the adoption of BIM and enhance the productivity of construction companies. To this end, we designed a progress explorer for step-by-step progress and work schedules, and we generated three-dimensional views and a progress list by applying unit information (primary units, part units, and detail units) of the work breakdown structure (WBS) to the parameters. To use the BIM template, work progress information is input to the BIM modeling objects through Dynamo. We also used Dynamo for quick and easy calculation of the quantity of materials needed for construction work. To test the BIM template, we applied it to an actual project and evaluated its visibility and a progress list. The results showed that the proposed BIM template facilitates progress management of a project and can thus facilitate the adoption of BIM and improve the productivity of construction companies.

Numerical Analysis of Heat Transfer Characteristics of Ribbed Channels with Different Film Cooling Hole Position (필름 냉각을 위한 리브드 채널의 홀 위치에 따른 열전달 특성 수치 해석)

  • Park, Jee Min;Moon, Joo Hyun;Lee, Hyung Ju;Lee, Seong Hyuk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.9
    • /
    • pp.69-76
    • /
    • 2018
  • The present study analyzed the effect of film hole position of 45 degree ribbed cooling channel on film cooling performance of gas turbine blades. We also investigated the influence of the ribs under the fixed blowing ratio. Three-dimensional numerical model was constructed and extensive simulation was conducted using the commercial code (Fluent ver. 17.0) under steady-state condition. Base on the simulation results, We investigated the cooling effectiveness, flow velocity, streamline, and pressure coefficient. Moreover, We analyzed the effect of cooling hole position on ejection of the secondary flow caused by the rib structure. From the results, It was found that internal flow of the cooling channel forms a vortex pair in the counterclockwise from the top side, and clockwise from the bottom side. For the channels with ribs, the vortex flow generated by the ribs caused a higher pressure difference near the hole outlet, resulting in at least 12% higher cooling effectiveness than the channel without ribs. Additionally, when the hole is located on the left side of the ribbed channel (Rib-Left), it can be found that the secondary flow generated by the ribs hits against wall surface near the hole to form a flow in the direction of the hole inclination angle. Therefore, It is considered that the region where the cooling gas discharged to the blade surface stays in the main flow boundary layer is wider than the other cases. In this case, The largest pressure coefficient difference was observed near the outlet of the hole, and as a result, the discharge of the cooling gas was accelerated and the cooling efficiency was slightly increased.

Finite Element Analysis of Instrumented Posterior Lumbar Interbody Fusion Cages for Reducing Stress Shielding Effects: Comparison of the CFRP cage and Titanium cage (요추유합술에서 응력방패 현상 감소를 위한 케이지의 유한요소해석 : CFRP 케이지와 티타늄 케이지 비교 연구)

  • Kang, Kyung-Tak;Chun, Heoung-Jae;Kim, Ho-Joong;Yeom, Jin-S.;Park, Kyoung-Mi;Hwang, In-Han;Lee, Kwang-Ill
    • Composites Research
    • /
    • v.25 no.4
    • /
    • pp.98-104
    • /
    • 2012
  • In recent years, degenerative spinal instability has been effectively treated with a cage. However, little attention is focused on the stiffness of the cage. Recent advances in the medical implant industry have resulted in the use of medical carbon fiber reinforced polymer (CFRP) cages. The biomechanical advantages of using different cage material in terms of stability and stresses in bone graft are not fully understood. A previously validated three-dimensional, nonlinear finite element model of an intact L2-L5 segment was modified to simulate posterior interbody fusion cages made of CFRP and titanium at the L4-L5 disc with pedicle screw, to investigate the effect of cage stiffness on the biomechanics of the fused segment in the lumbar region. From the results, it could be found that the use of a CFRP cage would not only reduce stress shielding, but it might also have led to increased bony fusion.

Parametric Numerical Study on the Performance of Helical Tidal Stream Turbines (헬리컬 터빈의 설계인자에 따른 성능 연구)

  • Han, Jun-Sun;Choi, Da-Hye;Hyun, Beom-Soo;Kim, Moon-Chan;Rhee, Shin-Hyung;Song, Mu-Seok
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.14 no.2
    • /
    • pp.114-120
    • /
    • 2011
  • The characteristics of a helical turbine to be used for tidal stream energy conversion have been numerically studied with varying a few design parameters. The helical turbines were proposed aiming at mitgating the well known poor cut-in characteristics and the structural vibration caused by the fluctuating torque, and the basic concept is introducing some twisting angle of the vertical blade along the rotation axis of the turbine. Among many potential controling parameters, we focused, in this paper, on the twisting angle and the height to diameter ratio of the turbine, and, based on the numerical experiment, We tried to propose a configuration of such turbine for which better performance can be expected. The three-dimensional unsteady RANS equations were solved by using the commercial CFD software, FLUENT with k-${\omega}$ SST turbulence model, and the grid was generated by GAMBIT. It is shown that there are a range of the twisting angle producing better efficiency with less vibration and the minimum height to diameter ratio above which the efficiency does not improve considerably.