• Title/Summary/Keyword: Three-dimensional Model

Search Result 4,701, Processing Time 0.032 seconds

Development of a Nowcast System for the Taiwan Strait (TSNOW): Numerical Simulation of Barotropic Tides

  • Jan, Sen;Wang, Yu-Huai;Chao, Shenn-Yu;Wang, Dong-Ping
    • Ocean and Polar Research
    • /
    • v.23 no.2
    • /
    • pp.195-203
    • /
    • 2001
  • A fine-grid (3 km ${\times}$ 3 km), three-dimensional nowcast system of sea levels, currents, temperature, and salinity is being developed for the Taiwan Strait. The project takes a balanced approach relying equally on models and observations, will have the capacity of real-time data assimilation, and is aimed at both practical and scientific applications. To determine boundary conditions and verify model results, eight coastal tide-gauge stations were first established along both sides of the strait. Strait-wide hydrographic surveys were conducted by research vessels. Currents are being measured using bottom-mounted ADCP moorings in a meridional deep channel off southwest Taiwan and along a traverse section in the central part of the strait. In addition to a fine-resolution three-dimensional model of the Taiwan Strait, an adjoint model and a larger-domain two-dimensional model were used to better determine boundary conditions in the northern and southern boundaries of the strait. In the first stage of model development, barotropic tides were successfully simulated in a hindcast mode. The protocol product has been released to general public, including government agencies, universities and general users.

  • PDF

Determination of Priority for Improvement Using the Theory of Two-dimensional Quality (품질의 이원론을 이용한 개선의 우선순위 결정)

  • Song, Hae Geun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.36 no.1
    • /
    • pp.70-77
    • /
    • 2013
  • The theory of two-dimensional quality, in particular, the Kano model that is developed by the analogy with the M-H theory, has been applied in various industry fields for more than three decades. Importance-Performance Analysis (IPA) assumes that the degree of physical fulfilment of quality attributes and the satisfaction of that attribute is linear, and therefore, it is applicable to the traditional one-dimensional attribute, not other quality types defined in the Kano's model such as attractive or must-be attribute. To solve this problem, the current study suggests a new importance-satisfaction analysis using a modified IPA in accordance with the three quality types and a diagonal method introduced by Slack (1999) to determine improvement priority. For this, I investigated 19 smartphone's quality attributes and conducted a survey of 334 university students for the results of Kano's model, which adopted from Song and Park (2012)'s study, and the importance/satisfaction of the quality attributes and the results of the priority for improvement of the 19 quality attributes. The results show that the proposed I-S priority model is better than the conventional IPA based on the comparison results of determination coefficient from the regression analysis of the two models.

DEVELOPMENT OF THE MULTI-DIMENSIONAL HYDRAULIC COMPONENT FOR THE BEST ESTIMATE SYSTEM ANALYSIS CODE MARS

  • Bae, Sung-Won;Chung, Bub-Dong
    • Nuclear Engineering and Technology
    • /
    • v.41 no.10
    • /
    • pp.1347-1360
    • /
    • 2009
  • A multi-dimensional component for the thermal-hydraulic system analysis code, MARS, was developed for a more realistic three-dimensional analysis of nuclear systems. A three-dimensional and two-fluid model for a two-phase flow in Cartesian and cylindrical coordinates was employed. The governing equations and physical constitutive relationships were extended from those of a one-dimensional version. The numerical solution method adopted a semi-implicit and finite-difference method based on a staggered-grid mesh and a donor-cell scheme. The relevant length scale was very coarse compared to commercial computational fluid dynamics tools. Thus a simple Prandtl's mixing length turbulence model was applied to interpret the turbulent induced momentum and energy diffusivity. Non drag interfacial forces were not considered as in the general nuclear system codes. Several conceptual cases with analytic solutions were chosen and analyzed to assess the fundamental terms. RPI air-water and UPTF 7 tests were simulated and compared to the experimental data. The simulation results for the RPI air-water two-phase flow experiment showed good agreement with the measured void fraction. The simulation results for the UPTF downcomer test 7 were compared to the experiment data and the results from other multi-dimensional system codes for the ECC delivery flow.

Groundwater Flow Analysis Using a Steady State Three-dimensional Model in an Upland Area (삼차원정상지하수모형에 의한 홍적대지의 지하수류동해석)

  • 배상근
    • Water for future
    • /
    • v.22 no.1
    • /
    • pp.81-90
    • /
    • 1989
  • A numerical simulation technique of three-dimensional finite difference model is developed to study the groundwater flow system in Dejima, an upland area which faces Kasumigaura Lake. For general perspectives of the groundwater flow system, a steady state three-dimensinal model is simulated. For the sedimentary mud formations which are found in the representative formation, three situations where the horizontal permeability is equal to 10 times and 100 times of the vertical one. The finite difference grid used in the simulation has 60$\times$50$\times$30=90,000 nodes. A converged solution with a tolerance of 0.001 meter of hydraulic head is set. Having determined the flow net by using a steady state three-dimensional model, the results for the three cases of hydraulic conductivity are compared with the results of the tracer methods (Bae and Kayane, 1987). With the aid of four representative vertical cross-sections, groundwater flow systems in the study area are assumed. The results of these are reasonally good comparable with the results of the basin yield and thd recharge-discharge distribution 8.

  • PDF

Design Optimization of a Printed Circuit Heat Exchanger Using Surrogate Models (대리모델들을 이용한 인쇄형 열교환기의 최적설계)

  • Lee, Sang-Moon;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.5
    • /
    • pp.55-62
    • /
    • 2011
  • Shape optimization of a Printed circuit heat exchanger (PCHE) has been performed by using three-dimensional Reynolds-Averaged Navier-Stokes (3-D RANS) analysis and surrogate modeling techniques. The objective function is defined as a linear combination of effectiveness of the PCHE term and pressure drop in the cold channels of the PCHE. The cold channel angle and the ellipse aspect ratio of the cold channel are used as design variables for the optimization. Design points are selected through Latin-hypercube sampling. The optimal point is determined through surrogate-based optimization method which uses 3-D RANS analyses at design points. The results of three types of surrogate model are compared each other. The results of the optimizations indicate improved performance in friction loss but low performance in effectiveness than the reference shape.

A Study of SFFS for Office Type using Three-dimensional Printing Process (3DP 공정을 이용한 오피스용 임의형상 제작시스템 에 관한 연구 (SFFS))

  • 이원희;김동수;이택민
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1128-1131
    • /
    • 2004
  • SFF(solid freeform fabrication) is another name of RP(rapid prototyping). The SFFS for office type wishes to develop system that can produce small object such as hand phone, cup, accessory etc. with high speed, and also intend suitable system in office environment by compact design, and buy easily by inexpensive price. As can manufacture high speed in existent SFF process technology, representative process that have competitive power in price is 3DP (three dimensional printing) technology. The 3DP technology is way to have general two dimensional printing technology and prints to three dimension, is technology that make three-dimensional solid freeform that want binder doing jetting selectively on powder through printer head. We designed and manufactured SFFS for office based on 3DP process technology design and manufactured, and composed head system so that use 3 printer heads at the same time to improve the fabrication speed of system. We used printer head of INCJET company and cartridge used HP45 series model who can buy easily in general city. And we directly fabricated three dimensional solid freeform using developed SFFS for office type.

  • PDF

Experimental study on seepage characteristics of large size rock specimens under three-dimensional stress

  • Sun, Wenbin;Xue, Yanchao;Yin, Liming;Zhang, Junming
    • Geomechanics and Engineering
    • /
    • v.18 no.6
    • /
    • pp.567-574
    • /
    • 2019
  • In order to study the effect of stress and water pressure on the permeability of fractured rock mass under three-dimensional stress conditions, a single fracture triaxial stress-seepage coupling model was established; By using the stress-seepage coupling true triaxial test system, large-scale rock specimens were taken as the research object to carry out the coupling test of stress and seepage, the fitting formula of permeability coefficient was obtained. The influence of three-dimensional stress and water pressure on the permeability coefficient of fractured rock mass was discussed. The results show that the three-dimensional stress and water pressure have a significant effect on the fracture permeability coefficient, showing a negative exponential relationship. Under certain water pressure conditions, the permeability coefficient decreases with the increase of the three-dimensional stress, and the normal principal stress plays a dominant role in the permeability. Under certain stress conditions, the permeability coefficient increases when the water pressure increases. Further analysis shows that when the gob floor rock mass is changed from high stress to unloading state, the seepage characteristics of the cracked channels will be evidently strengthened.

Computational study of the wave propagation in three-dimensional human cardiac tissue

  • Kwon, Soon-Sung;Im, Uk-Bin;Kim, Ki-Woong;Lee, Yong-Ho;Shim, Eun-Bo
    • International Journal of Vascular Biomedical Engineering
    • /
    • v.3 no.1
    • /
    • pp.23-29
    • /
    • 2005
  • We developed a three dimensional cardiac tissue model based on human cardiac cell and mono-domain approximation for action potential propagation. The human myocyte model proposed by ten Tusscher et al. (TNNP model) (2004) for cell electrophysiology and a mono-domain method for electric wave propagation are used to simulate the cardiac tissue propagation mechanism using a finite element method. To delineate non-homogeneity across cardiac tissue layer, we used three types of cardiac cell models. Ansiotropic effect of action potential propagation is also considered in this study. In this 3D anisotropic cardiac tissue with three cell layers, we generated a reentrant wave using S1-S2 protocol. Computational results showed that the reentrant wave was affected by the anisotropic properties of the cells. To test the reentrant wave under pathological state, we simulated a hypertopic model with non-excitable fibroblasts in stochastic manner. Compared with normal tissue, the hypertropic tissue result showed another center of reentrant wave, indicating that the wave pattern can be more easily changed from regular with a concentric focus to irregular multi-focused reentrant waves in case of patients with hypertrophy.

  • PDF

Flow Analysis of Three-Dimensional Wing in Ground Effect (지면 효과를 갖는 3차원 날개의 유동해석)

  • Im Ye-Hoon;Chang Keun-Shik
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2000.05a
    • /
    • pp.84-90
    • /
    • 2000
  • Ground effect of three-dimensional wing is studied. LU-factored Implicit upwind TVD scheme and Baldwin-Lomax turbulence model are used for this calculation. To investigate ground effect, NACA 4415 wing at M=0.5 calculated. Two different angles of attack and three cases of flight height are calculated. As increasing angle of attack, the ground effect becomes strong. In case of NACA 4415 wing in ground effect, strength of wing tip vortex becomes stronger than that of free flight.

  • PDF

Numerical Simulation of Three-Dimensional Motion of Droplets by Using Lattice Boltzmann Method

  • Alapati, Suresh;Kang, Sang-Mo;Suh, Yong-Kweon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.2-5
    • /
    • 2008
  • This study describes the numerical simulation of three-dimensional droplet formation and the following motion in a cross-junction microchannel by using the Lattice Boltzmann Method (LBM). Our aim is to develop the three-dimensional binary fluids model, consisting of two sets of distribution functions to represent the total fluid density and the density difference, which introduces the repulsive interaction consistent with a free-energy function between two fluids. We validated the LBM code with the velocity profile in a 3-dimensional rectangular channel. Then, we applied our code to the numerical simulation of a binary fluid flow in a cross-junction channel focusing on the investigation of the droplet formulation. Due to the pressure and interfacial-tension effect, one component of the fluids which is injected from one inlet is cut off into many droplets periodically by the other component which is injected from the other inlets. We considered the effect of the boundary conditions for density difference (order parameter) on the wetting of the droplet to the side walls.

  • PDF