• Title/Summary/Keyword: Three-dimensional Internal Flow Analysis

Search Result 88, Processing Time 0.023 seconds

NUMERICAL ANALYSIS OF TWO- AND THREE-DIMENSIONAL SUBSONIC TURBULENT CAVITY FLOWS (2차원과 3차원 아음속 공동 유동 특성에 대한 수치적 연구)

  • Choi, Hong-Il;Kim, Jae-Soo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.10a
    • /
    • pp.187-193
    • /
    • 2007
  • The flight vehicles have cavities such as wheel wells and bomb bays. The flow around a cavity is characterized as unsteady flow because of the formation and dissipation of vortices due to the interaction between the freestream shear layer and cavity internal flow, the generation of shock and expansion waves. Resonance phenomena can damage the structures around the cavity and negatively affect aerodynamic performance and stability. In the present study, numerical analysis was performed for cavity flows by the unsteady compressible three dimensional Reynolds-Averaged Navier-Stokes (RANS) equations with Wilcox's ${\kappa}\;-\;{\omega}$ turbulence model. The cavity has the aspect ratios of 2.5, 3.5 and 4.5 for two-dimensional case, same aspect ratios with the W/D ratio of 2 for three-dimensional case. The Mach and Reynolds numbers are 0.53 and 1,600,000 respectively. The flow field is observed to oscillate in the "shear layer mode" with a feedback mechanism. Based on the SPL(Sound Pressure Level) analysis of the pressure variation at the cavity trailing edge, the dominant frequency was analyzed and compared with the results of Rossiter's formula. The MPI(Message Passing Interface) parallelized code was used for calculations by PC-cluster.

  • PDF

Analysis of Two Dimensional and Three Dimensional Supersonic Turbulence Flow around Tandem Cavities

  • Woo Chel-Hun;Kim Jae-Soo;Lee Kyung-Hwan
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.8
    • /
    • pp.1256-1265
    • /
    • 2006
  • The supersonic flows around tandem cavities were investigated by two-dimensional and three-dimensional numerical simulations using the Reynolds-Averaged Navier-Stokes (RANS) equation with the k- ω turbulence model. The flow around a cavity is characterized as unsteady flow because of the formation and dissipation of vortices due to the interaction between the freestream shear layer and cavity internal flow, the generation of shock and expansion waves, and the acoustic effect transmitted from wake flow to upstream. The upwind TVD scheme based on the flux vector split with van Leer's limiter was used as the numerical method. Numerical calculations were performed by the parallel processing with time discretizations carried out by the 4th-order Runge- Kutta method. The aspect ratios of cavities are 3 for the first cavity and 1 for the second cavity. The ratio of cavity interval to depth is 1. The ratio of cavity width to depth is 1 in the case of three dimensional flow. The Mach number and the Reynolds number were 1.5 and $4.5{\times}10^5$, respectively. The characteristics of the dominant frequency between two- dimensional and three-dimensional flows were compared, and the characteristics of the second cavity flow due to the first cavity flow was analyzed. Both two dimensional and three dimensional flow oscillations were in the 'shear layer mode', which is based on the feedback mechanism of Rossiter's formula. However, three dimensional flow was much less turbulent than two dimensional flow, depending on whether it could inflow and outflow laterally. The dominant frequencies of the two dimensional flow and three dimensional flows coincided with Rossiter's 2nd mode frequency. The another dominant frequency of the three dimensional flow corresponded to Rossiter's 1st mode frequency.

Numerical Analysis of Three Dimensional Supersonic Flow around Cavities

  • Woo Chel-Hun;Kim Jae-Soo;Kim Jong-Rok
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.05a
    • /
    • pp.311-314
    • /
    • 2006
  • The supersonic flow around tandem cavities was investigated by three- dimensional numerical simulations using the Reynolds-Averaged Navier-Stokes(RANS) equation with the $\kappa-\omega$ thrbulence model. The flow around a cavity is characterized as unsteady flow because of the formation and dissipation of vortices due to the interaction between the freestream shear layer and cavity internal flow, the generation of shock and expansion waves, and the acoustic effect transmitted from wake flow to upstream. The upwind TVD scheme based on the flux vector split using van Leer's limiter was used as the numerical method. Numerical calculations were performed by the parallel processing with time discretizations carried out by the 4th-order Runge-Kutta method. The aspect ratio of cavities are 3 for the first cavity and 1 for the second cavity. The ratio of cavity interval to depth is 1. The ratio of cavity width to depth is 1 in the case of three dimensional flow. The Mach number and the Reynolds number were 1.5 and $4.5{\times}10^5$, respectively. The characteristics of the dominant frequency between two-dimensional and three-dimensional flows were compared, and the characteristics of the second cavity flow due to the fire cavity flow cavity flow was analyzed. Both two dimensional and three dimensional flow oscillations were in the 'shear layer mode', which is based on the feedback mechanism of Rossiter's formula. However, three dimensional flow was much less turbulent than two dimensional flow, depending on whether it could inflow and outflow laterally. The dominant frequencies of the two dimensional flow and three dimensional flows coincided with Rossiter's 2nd mode frequency. The another dominant frequency of the three dimensional flow corresponded to Rossiter's 1st mode frequency.

  • PDF

Vortices within a Three-Dimensional Separation in an Axial Flow Stator of a Diagonal Flow Fan

  • Kinoue, Yoichi;Shiomi, Norimasa;Setoguchi, Toshiaki
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.2
    • /
    • pp.262-270
    • /
    • 2011
  • Experimental and numerical investigations were conducted for an internal flow in an axial flow stator of a diagonal flow fan. A corner separation near the hub surface and the suction surface of a stator blade was focused on, and further, three-dimensional vortices in separated flow were investigated by the numerical analysis. At low flow rate of 80% of the design flow rate, a corner separation of the stator between the suction surface and the hub surface can be found in both experimental and calculated results. Separation vortices are observed in the limiting streamline patterns both on the blade suction and on the hub surfaces at 80% of the design flow rate in the calculated results. It also can be observed in the streamline pattern that both vortices from the blade suction surface and from the hub surface keep vortex structures up to far locations from these wall surfaces. An attempt to explain the vortices within a three-dimensional separation is introduced by using vortex filaments.

Computational Analysis of Three-Dimensional Flow in PMD igniter (착화기 3차원 유동의 전산 해석 연구)

  • Kim, Yong-chan;Yang, Hee Won;Roh, Tae-Seong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.416-417
    • /
    • 2017
  • In this study, Three-Dimensional igniter modeling and computational Analysis for PMD internal flow analysis have been conducted. The igniter modeling used the lumped parameter method and the computational analysis has been performed in conjunction with the commercial program STAR-CCM+. The result of computational analysis has been compared with those of CBT and PMD experiments.

  • PDF

Development of Centrifugal Compressors in an 1.2MW Industrial Gas Turbine(I)-Aerodynamic Design and Analysis- (1.2MW급 산업용 가스터빈 원심압축기 개발(1)- 공력설계해석 -)

  • Jo, Gyu-Sik;Lee, Heon-Seok;Son, Jeong-Rak
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.8
    • /
    • pp.2707-2720
    • /
    • 1996
  • The aerodynamic design of the two-stages of centrifugal compressors in an 1.2MW industrial gas turbine is completed with the application of numerical analyses. The final shape of an intake, the axial guide vanes and a return channel is determined using several interactions between design and two-dimensional turbulent flow analysis, focused on the minimum loss of internal flows. The one-dimensional turbulent flow analysis, focused on the minimum loss of internal flows. The one-dimensional design and prediction of aerodynamic performances for the compressors are performed by two different methods; one is a method with conventional loss models, and the other a method with the two-zone model. The combination methods of the Betzier curves generate three-dimensional geometric shapes of impeller blades which are to be checked with a careful change of aerodynamic blade loadings. The impeller design is finally completed by the applications of three-dimensional compressible turbulent flow solvers, and the effect of minor change of design of the second-stage channel diffuser is also studied. All the aerodynamic design results are soon to the verified by component performance tests of prototype centrifugal compressors.

NUMERICAL ANALYSIS FOR TURBULENT FLOW AND AERO-ACOUSTIC OVER A THREE DIMENSIONAL CAVITY WITH LARGE ASPECT RATIO (3차원 고세장비 공동 주위의 난류유동 및 음향 특성에 관한 수치적 연구)

  • Mun, P.U.;Kim, J.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.297-301
    • /
    • 2008
  • The flight vehicles have cavities such as wheel wells and bomb bays. The flow around a cavity is characterized as unsteady flow because of the formation and dissipation of vortices due to the interaction between the freestream shear layer and cavity internal flow, the generation of shock and expansion waves. Resonance phenomena can damage the structures around the cavity and negatively affect aerodynamic performance and stability. The flow field is observed to oscillate in the "shear layer mode" with low aspect ratio. In the present study, numerical analysis was performed for cavity flows by the unsteady compressible three dimensional Reynolds-Averaged Navier-Stokes (RANS) equations with Wilcox's $\kappa$-$\omega$ turbulence model. The flow field is observed to oscillate in the shear layer mode" with large aspect ratio. Based on the SPL(Sound Pressure Level) analysis of the pressure variation at the cavity trailing edge, the dominant frequency was analyzed and compared with the results of Rossiter's formul. The aero-acoustic wave analyzed with CPD(Correlation of Pressure Distribution).

  • PDF

NUMERICAL ANALYSIS FOR TURBULENT FLOW AND AERO-ACOUSTIC OVER A THREE DIMENSIONAL CAVITY WITH LARGE ASPECT RATIO (3차원 고세장비 공동 주위의 난류유동 및 음향 특성에 관한 수치적 연구)

  • Mun, P.U.;Kim, J.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.297-301
    • /
    • 2008
  • The flight vehicles have cavities such as wheel wells and bomb bays. The flow around a cavity is characterized as unsteady flow because of the formation and dissipation of vortices due to the interaction between the freestream shear layer and cavity internal flow, the generation of shock and expansion waves. Resonance phenomena can damage the structures around the cavity and negatively affect aerodynamic performance and stability. The flow field is observed to oscillate in the "shear layer mode" with low aspect ratio. In the present study, numerical analysis was performed for cavity flows by the unsteady compressible three dimensional Reynolds-Averaged Navier-Stokes (RANS) equations with Wilcox's ${\kappa}-{\varepsilon}$ turbulence model. The flow field is observed to oscillate in the "shear layer mode" with large aspect ratio. Based on the SPL(Sound Pressure Level) analysis of the pressure variation at the cavity trailing edge, the dominant frequency was analyzed and compared with the results of Rossiter's formul. The aero-acoustic wave analyzed with CPD(Correlation of Pressure Distribution).

  • PDF

Numerical Analysis of Three-Dimensional Compressible Viscous Flow Field in Turbine Cascade (터빈 익렬내부의 3차원 압축성 점성유동장의 수치해석)

  • 정희택;백제현
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.10
    • /
    • pp.1915-1927
    • /
    • 1992
  • A three-dimensional Navier-Stokes code has been developed for analysis of viscous flows through turbomachinery blade rows or other internal passages. The Navier-Stokes equations are written in a cartesian coordinate system, then mapped to a general body-fitted coordinate system. Streamwise viscous terms are neglected and turbulent effects are modeled using the baldwin-Lomax model. Equations are discretized using finite difference method on the stacked C-type grids and solved using LU-ADI decomposition scheme. calculations are made for a two-dimensional cascade in a transonic wind-tunnel to see the infuence of the endwalls. The flow pattern of the three-dimensional flow near the endwall is found to be different from that of the two-dimensional flow due to the existence of the endwalls.

An Investigation on the Torque Converter Characteristics at Various Operating Conditions (작동 조건 변화에 대한 토크 컨버터의 성능 특성 분석)

  • Jang, Wook-Jin;Lee, Chin-Won;Lim, Won-Sik;Park, Yeong-Il;Lee, Jang-Moo
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.678-683
    • /
    • 2000
  • The one-dimensional performance model of a torque converter has been widely used to analyze and predict the performance and dynamic behavior of a torque converter. But this model doesn't include the information of the operating fluid properties. Therefore, to precisely predict dynamic performance of a torque converter, the effect of operating conditions must be considered through experimental coefficients such as friction loss coefficient and shock loss coefficient. And these coefficients cannot be achieved without experiments or internal flow analysis. In this study, the effects of varying material properties of operating fluid according to various operating temperatures are clarified with flow analysis of a torque converter. And these results are verified by comparing with those of performance experiment.

  • PDF