• Title/Summary/Keyword: Three-dimensional (3D) structure analysis

Search Result 312, Processing Time 0.026 seconds

Analysis of a three-dimensional FEM model of a thin piezoelectric actuator embedded in an infinite host structure

  • Zeng, Xiaohu;Yue, Zhufeng;Zhao, Bin;Wen, S.F.
    • Advances in materials Research
    • /
    • v.3 no.1
    • /
    • pp.237-257
    • /
    • 2014
  • In this paper, we adopted a two-dimensional analytical electro-elastic model to predict the stress distributions of the piezoelectric actuator in 3D case. The actuator was embedded in an elastic host structure under electrical loadings. The problem is reduced to the solution of singular integral equations of the first kind. The interfacial stresses and the axial normal stress in both plane stress state and plane strain state were obtained to study the actuation effects being transferred from the actuator to the host. The stress distributions of the PZT actuator in different length and different thickness were analyzed to guarantee the generality. The validity of the present model has been demonstrated by application of specific examples and comparisons with the corresponding results obtained from the Finite Element Method.

Exploration of Isovist Fields to Model 3D Visibility With Building Facade

  • Chang, Dong-Kuk;Park, Joo-Hee
    • Architectural research
    • /
    • v.13 no.3
    • /
    • pp.19-29
    • /
    • 2011
  • Visibility of a space have been defined in several different ways: such as the axial line covering a convex space, a convex space defining the fattest shape in a space and an Isovist field formed by a field of vision at a given vantage point. Isovist fields are referred to as a descriptive medium to describe a movement by reviewing and analyzing geometric properties in them. Many descriptive methods for analysis of three-dimensional isovist are applied to analyzing the morphological properties in a 3D space more realistically. Although these models are regarded as a more advanced method for describing spatial properties, they have pros and cons such as complex mathematical calculations and somewhat arbitrary calibration in addition to huge consumption of memory space. These difficulties lead to the development of a three-dimensional visual accessibility model that explores the implication of building shape on the calculation of isovist fields drawn on a 2D plane. We propose a conceptual framework of how to measure the isovist field not as a 3D volume but as a combination of 2D plane on the ground with the 3D building shape of it's facade.

Cytotoxic Activity and Three-Dimensional Quantitative Structure Activity Relationship of 2-Aryl-1,8-naphthyridin-4-ones

  • Kim, Yong-Jin;Kim, Eun-Ae;Chung, Mi-Lyang;Im, Chae-Uk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.6
    • /
    • pp.511-516
    • /
    • 2009
  • A series of substituted 2-arylnaphthyridin-4-one analogues, which were previously synthesized in our laboratory, were evaluated for their in vitro cytotoxic activity against human lung cancer A549 and human renal cancer Caki-2 cells using MTT assay. Some compounds (11, 12, and 13) showed stronger cytotoxicity than colchicine against both tumor cell lines, and compound 13 exhibited the most potent activity with $IC_{50}$ values of 2.3 and $13.4\;{\mu}M$, respectively. Three-dimensional quantitative structure activity relationship (3D-QSAR) studies of comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were performed. Predictive 3D-QSAR models were obtained with $q^2$ values of 0.869 and 0.872 and $r^2_{ncv}$ values of 0.983 and 0.993 for CoMFA and CoMSIA, respectively. These results demonstrate that CoMFA and CoMSIA models could be reliably used in the design of novel cytotoxic agents.

Three Dimensional Supersonic Jet Flow Analysis Impinging on Flame Deflector Surface (화염유도로 주위의 3차원 초음속 제트 유동 해석)

  • Park, S.K.;Choi, B.K.;Yoon, K.T.;Woo, Y.C.;Lee, D.S.;Kang, S.I.
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.494-498
    • /
    • 2001
  • When supersonic jet impinges on wall from the nozzle, complex flow pattern appears such as Mach disc, expansion fan, and jet boundary. The numerical computation of this supersonic jet is important on flame deflecctor design for launch space especially. In this paper, we analyzed supersonic jet structure impinging on deflector wall using three dimensional steady and unsteady compressible equation and showed temperature and pressure distribution on the wall surface. As a result, some dominant factors of jet flows are discussed for conceptual design of flame deflector.

  • PDF

PLAXIS 3D simulation, FLAC3D analysis and in situ monitoring of Excavation stability

  • Lei, Zhou;Zahra, Jalalichi;Vahab, Sarfarazi;Hadi, Haeri;Parviz, Moarefvand;Mohammad Fatehi, Marji;Shahin, Fattahi
    • Structural Engineering and Mechanics
    • /
    • v.84 no.6
    • /
    • pp.743-765
    • /
    • 2022
  • Near-surface excavations may cause the tilting and destruction of the adjacent superstructures in big cities. The stability of a huge excavation and its nearby superstructures was studied in this paper. Some test instruments monitored the deformation and loads at the designed location. Then the numerical models of the excavation were made in FLAC3D (a three-dimensional finite difference code) and Plaxis-3D (a three-dimensional finite element code). The effects of different supporting and reinforcement tools such as nails, piles, and shotcretes on the stability and bearing capacity of the foundation were analyzed through different numerical models. The numerically approximated results were compared with the corresponding in-field monitored results and reasonable compatibility was obtained. It was concluded that the displacement in excavation and the settlement of the nearby superstructure increases gradually as the depth of excavation rises. The effects of support and reinforcements were also observed and modeled in this study. The settlement of the structure gradually decreased as the supports were installed. These analyses showed that the pile significantly increased the bearing capacity and decreased the settlement of the superstructure. As a whole, the monitoring and numerical simulation results were in good consistency with one another in this practically important project.

Numerical Study of Structural Behavior of Underground Silo Structures for Low-and-Intermediate-level Radioactive Waste Disposal Facility (중저준위 방폐물 처분 사일로 구조물의 구조거동 수치해석 연구)

  • Kim, Sun-Hoon;Kim, Kwang-Jin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.3
    • /
    • pp.183-190
    • /
    • 2022
  • The construction of an underground silo structure was the first stage of erecting the Gyeongju low-and-intermediate-level radioactive waste disposal facility. The facility, completed in 2014, has a scale of 100 000 drums and is currently in operation. The underground silo structure, 25 and 50 m in diameter and height, respectively, consists of cylindrical (for storing waste packages) and dome parts. The dome is divided into lower (connected to the operation tunnel) and upper parts. The wall of the underground silo structure is an approximately 1-m-thick reinforced concrete liner. In this study, finite element analysis was performed for each phase of the construction sequence and operation of the underground silo structure. Two-dimensional axial symmetric finite element analysis was implemented using the SMAP-3D program. Three-dimensional finite element analysis was also performed to examine the reliability of the two-dimensional axial symmetric finite element model. The structural behavior of the underground silo structure was predicted, and its structural safety was examined.

An elasto-plastic damage constitutive model for jointed rock mass with an application

  • Wang, Hanpeng;Li, Yong;Li, Shucai;Zhang, Qingsong;Liu, Jian
    • Geomechanics and Engineering
    • /
    • v.11 no.1
    • /
    • pp.77-94
    • /
    • 2016
  • A forked tunnel, as a special complicated underground structure, is composed of big-arch tunnel, multi-arch tunnel, neighborhood tunnels and separate tunnels according to the different distances between two separate tunnels. Due to the complicated process of design and construction, surrounding jointed rock mass stability of the big-arch tunnel which belongs to the forked tunnel during excavation is a hot issue that needs special attentions. In this paper, an elasto-plastic damage constitutive model for jointed rock mass is proposed based on the coupling method considering elasto-plastic and damage theories, and the irreversible thermodynamics theory. Based on this elasto-plastic damage constitutive model, a three dimensional elasto-plastic damage finite element code (D-FEM) is implemented using Visual Fortran language, which can numerically simulate the whole excavation process of underground project and perform the structural stability of the surrounding rock mass. Comparing with a popular commercial computer code, three dimensional fast Lagrangian analysis of continua (FLAC3D), this D-FEM has advantages in terms of rapid computing process, element grouping function and providing more material models. After that, FLAC3D and D-FEM are simultaneously used to perform the structural stability analysis of the surrounding rock mass in the forked tunnel considering three different computing schemes. The final numerical results behave almost consistent using both FLAC3D and D-FEM. But from the point of numerically obtained damage softening areas, the numerical results obtained by D-FEM more closely approach the practical behaviors of in-situ surrounding rock mass.

H.B. Robinson-2 pressure vessel dosimetry benchmark: Deterministic three-dimensional analysis with the TORT transport code

  • Orsi, Roberto
    • Nuclear Engineering and Technology
    • /
    • v.52 no.2
    • /
    • pp.448-455
    • /
    • 2020
  • The H.B. Robinson Unit 2 (HBR-2) pressure vessel dosimetry benchmark is an in- and ex-Reactor Pressure Vessel (RPV) neutron dosimetry benchmark based on experimental data from the HBR-2 reactor, a 2300-MW PWR designed by Westinghouse and put in operation in March 1971, openly available through the SINBAD Database at OECD/NEA data Bank. The goals of the present work were to carry out three-dimensional (3D) fixed source transport calculations in both Cartesian (X,Y,Z) and cylindrical (R,θ,Z) geometries by using the TORT-3.2 discrete ordinates code on very detailed 3D HBR-2 geometrical models and to test the latest broad-group coupled (47 neutron groups + 20 photon groups) working cross section libraries in FIDO-ANISN format with same structure as BUGLE-96, such as BUGJEFF311.BOLIB, BUGENDF70.BOLIB and BUGLE-B7. The results obtained with all the cited libraries were satisfactory and are here reported and compared.

Development of 3D Visualization Technology for Meteorological Data (기상자료 3차원 가시화 기술개발 연구)

  • Seo In Bum;Joh Min Su;Yun Ja Young
    • Journal of the Korean Society of Visualization
    • /
    • v.1 no.2
    • /
    • pp.58-70
    • /
    • 2003
  • Meteorological data contains observation and numerical weather prediction model output data. The computerized analysis and visualization of meteorological data often requires very high computing capability due to the large size and complex structure of the data. Because the meteorological data is frequently formed in multi-variables, 3-dimensional and time-series form, it is very important to visualize and analyze the data in 3D spatial domain in order to get more understanding about the meteorological phenomena. In this research, we developed interactive 3-dimensional visualization techniques for visualizing meteorological data on a PC environment such as volume rendering, iso-surface rendering or stream line. The visualization techniques developed in this research are expected to be effectively used as basic technologies not only for deeper understanding and more exact prediction about meteorological environments but also for scientific and spatial data visualization research in any field from which three dimensional data comes out such as oceanography, earth science, and aeronautical engineering.

  • PDF

Three-dimensional analysis of stress and strain transmission through line joints of spatial linkage of plates

  • Rosenhouse, G.;Rutenberg, A.;Goldfarb, Y.R.
    • Structural Engineering and Mechanics
    • /
    • v.3 no.1
    • /
    • pp.11-23
    • /
    • 1995
  • The examined model consists of two substructures linked by a right angle rigid line joint. One element is a wall loaded externally along its upper edge by an uneven vertical load. The other element, defined as a plate, is not loaded. Stresses and displacements in the vicinity of the joint are analysed, considering the lateral distribution which leads to three-dimensional effects. The proposed solution combines classical approach with numerical means, using appropriate stress distribution polynomial functions along the joint. Space structure constructions supply cases of interest.