• Title/Summary/Keyword: Three-axial

Search Result 1,417, Processing Time 0.037 seconds

Buckling of insulated irregular transition flue gas ducts under axial loading

  • Ramadan, H.M.
    • Structural Engineering and Mechanics
    • /
    • v.43 no.4
    • /
    • pp.449-458
    • /
    • 2012
  • Finite element buckling analysis of insulated transition flue ducts is carried out to determine the critical buckling load multipliers when subjected to axial compression for design process. Through this investigation, the results of numerical computations to examine the buckling strength for different possible duct shapes (cylinder, and circular-to-square) are presented. The load multipliers are determined through detailed buckling analysis taking into account the effects of geometrical construction and duct plate thickness which have great influence on the buckling load. Enhancement in the buckling capacity of such ducts by the addition of horizontal and vertical stiffeners is also investigated. Several models with varying dimensions and plate thicknesses are examined to obtain the linear buckling capacities against duct dimensions. The percentage improvement in the buckling capacity due to the addition of vertical stiffeners and horizontal Stiffeners is shown to be as high as three times for some cases. The study suggests that the best location of the horizontal stiffener is at 0.25 of duct depth from the bottom to achieve the maximum buckling capacity. A design equation estimating the buckling strength of geometrically perfect cylindrical-to-square shell is developed by using regression analysis accurately with approximately 4% errors.

Plastic hinge length of circular reinforced concrete columns

  • Ou, Yu-Chen;Kurniawan, Raditya Andy;Kurniawan, Dimas Pramudya;Nguyen, Nguyen Dang
    • Computers and Concrete
    • /
    • v.10 no.6
    • /
    • pp.663-681
    • /
    • 2012
  • This paper presents a parametric study of the plastic hinge length of circular reinforced concrete columns using a three-dimensional finite element analysis method, and using the Taguchi robust design method to reduce computational cost. Parameters examined include the longitudinal reinforcing ratio, the shear span-to-depth ratio, the axial force ratio and the concrete compressive strength. The study considers longitudinal reinforcement with yield strengths of 414 MPa and 685 MPa, and proposes simplified formulas for the plastic hinge length of circular reinforced concrete columns, showing that increases in plastic hinge length correlate to increases in the axial load, longitudinal reinforcing and shear span-to-depth ratios. As concrete strength increases, the plastic hinge length decreases for the 414 MPa case but increases for the 685 MPa case.

Unified theory of reinforced concrete-A summary

  • Hsu, Thomas T.C.
    • Structural Engineering and Mechanics
    • /
    • v.2 no.1
    • /
    • pp.1-16
    • /
    • 1994
  • A unified theory has recently been developed for reinforced concrete structures (Hsu 1993), subjected to the four basic actions - bending, axial load, shear and torsion. The theory has five components, namely, the struts-and-ties model, the equilibrium (or plasticity) truss model, the Bernoulli compatibility truss model, the Mohr compatibility truss model and the softened truss model. Because the last three models can satisfy the stress equilibrium, the strain compatibility and the constitutive laws of materials, they can predict not only the strength, but also the load-deformation history of a member. In this paper the five models are summarized to illustrate their intrinsic consistency.

Endodermal Cyst of the Posterior Fossa

  • Lee, Chul-Woo;Yoon, Seok-Mann;Kim, Yoon-Jung;Yun, Il-Gyu
    • Journal of Korean Neurosurgical Society
    • /
    • v.37 no.4
    • /
    • pp.310-312
    • /
    • 2005
  • We report a case of endodermal cyst of the posterior fossa. A 44-year-old man presented with headache for three months. Computed tomography and magnetic resonance imaging revealed a $6{\times}2.5{\times}2cm$ sized extra-axial non-enhancing cystic lesion on the ventral aspect to brain stem. To avoid retraction injury to brain stem, far lateral transcondylar approach was selected. Right suboccipital craniotomy and partial removal of occipital condyle with resection of C-1 and C-2 hemilaminae exposed the extra-axial cyst well. The cyst has a whitish thick membrane. It was not adherent to brain stem and lower cranial nerves. Total removal of the cyst was done without difficulty. Histological analysis disclosed a layer of pseudostratified columnar epithelium with basement membrane. The result of immunohistochemical study was consistent with endodermal cyst.

Relative Power Density Distribution Calculations of the Kori Unit 1 Pressurized Water Reactor with Full-Scope Explicit Modeling of Monte Carlo Simulation

  • Kim, Jong-Oh;Kim, Jong-Kyung
    • Nuclear Engineering and Technology
    • /
    • v.29 no.5
    • /
    • pp.375-384
    • /
    • 1997
  • Relative power density distributions of the Kori Unit 1 pressurized water reactor are calculated by Monte Carlo modeling with the MCNP code. The Kori Unit 1 core is modeled on a three-dimensional representation of the one-eighth of the reactor in-vessel component with reflective boundaries at 0 and 45 degrees. The axial core model is based on half core symmetry and is divided into four axial segments. Fission reaction density in each rod is calculated by following 100 cycles with 5,000 test neutrons in each cycle after starling with a localized neutron source and ten noncontributing settle cycles. Relative assembly power distributions are calculated from fission reaction densities of rods in assembly. After 100 cycle calculations, the system converges to a k value of 1.00039 $\geq$ 0.00084. Relative assembly power distribution is nearly the same with that of the Kori Unit 1 FSAR. Applicability of the full-scope Monte Carlo simulation in the power distribution calculation is examined by the relative root moan square error of 2.159%.

  • PDF

Finite Element Analysis on the Stress and Displacement Characteristics of Oil Pipe (오일 파이프의 응력 및 변형거동특성에 관한 유한요소해석)

  • Kim, Chung-Kyun;Cho, Seung-Hyun
    • Tribology and Lubricants
    • /
    • v.25 no.6
    • /
    • pp.374-380
    • /
    • 2009
  • This paper presents the stress and displacement characteristics of oil pipe using the finite element analysis. Displacement in axial direction and von Mises stress of a pipe were analyzed with three design factors, which are the pipe thickness, the corrugation pitch and the corrugation height, under uniform oil pressure. The FE computed results are presented between a conventional round pipe and a rectangular pipe, which is manufactured in this study. The computed FE results show that maximum displacement in axial direction and von Mises stress of pipe are increased linearly as the oil pressure increases. Also, they are increased linearly as the corrugation pitch, corrugation height and pipe thickness increases. von Mises stress of a rectangular pipe at the edge increases sharply compared with that of a conventional round pipe. Therefore, the strength of rectangular pipe is superior to that of a conventional round pipe.

A Prediction of Bursting Failure in Tube Hydroforming Process Based on Plastic Instability (소성불안정성에 의한 관재 하이드로포밍 공정에서의 터짐 불량 예측)

  • Kim S. W.;Kim J.;Park H. J.;Kang B. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.210-213
    • /
    • 2004
  • Based on plastic instability, analytical prediction of bursting failure on tube hydroforming processes under combined internal pressure and independent axial feeding is carried out. Bursting is irrecoverable phenomenon due to local instability under excessive tensile stresses. In order to predict the bursting failure, three different classical necking criteria such as diffuse necking criterion for sheet and tube, local necking criterion for sheet are introduced. The incremental theory of plasticity fur anisotropic material is adopted and then the hydroforming limit and bursting failure diagram with respect to axial feeding and hydraulic pressure are presented. In addition, the influences of the material properties such as anisotropy parameter, strain hardening exponent on bursting pressure are investigated. As results of the above approach, the hydroforming limit in view of bursting failure is verified with experimental results.

  • PDF

3D buckling analysis of FGM sandwich plates under bi-axial compressive loads

  • Wu, Chih-Ping;Liu, Wei-Lun
    • Smart Structures and Systems
    • /
    • v.13 no.1
    • /
    • pp.111-135
    • /
    • 2014
  • Based on the Reissner mixed variational theorem (RMVT), finite rectangular layer methods (FRLMs) are developed for the three-dimensional (3D) linear buckling analysis of simply-supported, fiber-reinforced composite material (FRCM) and functionally graded material (FGM) sandwich plates subjected to bi-axial compressive loads. In this work, the material properties of the FGM layers are assumed to obey the power-law distributions of the volume fractions of the constituents through the thickness, and the plate is divided into a number of finite rectangular layers, in which the trigonometric functions and Lagrange polynomials are used to interpolate the in- and out-of-plane variations of the field variables of each individual layer, respectively, and an h-refinement process is adopted to yield the convergent solutions. The accuracy and convergence of the RMVT-based FRLMs with various orders used for expansions of each field variables through the thickness are assessed by comparing their solutions with the exact 3D and accurate two-dimensional ones available in the literature.

A Field Test Study on Skin Friction Behavior of Driven Steel Piles (항타강관말뚝의 주면마찰저항 특성에 관한 현장실험 연구)

  • Lee, Min-Hee;Lee, Chung-Sook;Jung, Chang-Kyu;Choi, Yong-Kyu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.575-582
    • /
    • 2005
  • Static pile load tests for three instrumented driven steel pipe pies were performed. Based on the distributions of pile axial loads along the pile depth, Characteristics of unit skin friction were analyzed.

  • PDF

Construction and Characteristics of Single Phase Switched Reluctance Motor

  • Oh, Young-Woong;Lee, Eun-Woong;Lee, Jong-Han;Kim, Jun-Ho
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.4B no.1
    • /
    • pp.6-11
    • /
    • 2004
  • The single phase switched reluctance motor (SRM) has many merits; simple structure and driving circuits, easy operation and speed control, and etc. This paper presents the torque characteristics of disk type single phase SRM by changing the salient pole lengths and pole arcs. The prototype single phase SRM has a three dimensional magnetic flux pattern because of its structure. That is, the radial and axial magnetic flux contributes to torque generation. Thus, 3D analysis is required for computation of its magnetic field. In this paper, 3D FEM is used for analyzing the magnetic flux distribution and magnetic co-energy.