• Title/Summary/Keyword: Three-axial

Search Result 1,417, Processing Time 0.024 seconds

A Study of Design Method of an Axial-Type Suction Fan (축류형 흡입송풍기 설계기술에 관한 연구)

  • Choi, Hyoung-Jun;Kim, Chang-Su;Cho, Chong-Hyun;Cho, Soo-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.1
    • /
    • pp.42-51
    • /
    • 2010
  • Many different types of fan have been applying to various industrial fields. Fan design methods are much different depending on the types of fan, operating conditions, and connecting parts at the inlet or exit of the fan etc. In this study, design methods for an axial-type suction fan are studied. This fan discharges the air in the relative static pressure of -285Pa to the atmosphere with the flow rate of $960m^3/min$. For three-dimensional blade design, three different design methods were applied, such as the free vortex method, the exponential method, and the cascade method. In the cascade method, the blade loading along the radial direction was obtained from the lift coefficient which was necessary to obtain the pressure rise on a fan rotor. This method is different from the free vortex and the exponential method which control the strength of the vortex. The fan performance prediction was conducted using the CFD with three different inlet ducts. The best fan performance was obtained when the fan was designed by using the cascade method. The designed fan using the exponential method showed better performance compared to a fan designed using the free vortex method. However, the fan performance was changed depending on the installed inlet ducts. So, an efficient fan can be designed with the adjustment of design variables on the basis of the flow structures within the fan as well as the fan design procedure.

Finite element modelling of back-to-back built-up cold-formed stainless-steel lipped channels under axial compression

  • Roy, Krishanu;Lau, Hieng Ho;Lim, James B.P.
    • Steel and Composite Structures
    • /
    • v.33 no.1
    • /
    • pp.37-66
    • /
    • 2019
  • In cold-formed steel structures, such as trusses, wall frames and portal frames, the use of back-to-back built-up cold-formed stainless-steel lipped channels as compression members are becoming increasingly popular. The advantages of using stainless-steel as structural members are corrosion resistance and durability, compared with carbon steel. The AISI/ASCE Standard, SEI/ASCE-8-02 and AS/NZS do not include the design of stainless-steel built-up channels and very few experimental tests or finite element analyses have been reported in the literature for such back-to back cold-formed stainless-steel channels. Current guidance by the American Iron and Steel Institute (AISI) and the Australian and New Zealand (gAS/NZS) standards for built-up carbon steel sections only describe a modified slenderness approach, to consider the spacing of the intermediate fasteners. Thus, this paper presents a numerical investigation on the behavior of back-to-back cold-formed stainless-steel built-up lipped channels. Three different grades of stainless steel i.e., duplex EN1.4462, ferritic EN1.4003 and austenitic EN1.4404 have been considered. Effect of screw spacing on the axial strength of such built-up channels was investigated. As expected, most of the short and intermediate columns failed by either local-global or local-distortional buckling interactions, whereas the long columns, failed by global buckling. All three grades of stainless-steel stub columns failed by local buckling. A comprehensive parametric study was then carried out covering a wide range of slenderness and different cross-sectional geometries to assess the performance of the current design guidelines by AISI and AS/NZS. In total, 647 finite element models were analyzed. From the results of the parametric study, it was found that the AISI & AS/NZS are conservative by around 10 to 20% for cold-formed stainless-steel built-up lipped channels failed through overall buckling, irrespective of the stainless-steel grades. However, the AISI and AS/NZS can be un-conservative by around 6% for all three grades of stainless-steel built-up channels, which failed by local buckling.

Behavior of three-tube buckling-restrained brace with circumference pre-stress in core tube

  • Li, Yang;Qu, Haiyan;Xiao, Shaowen;Wang, Peijun;You, Yang;Hu, Shuqing
    • Steel and Composite Structures
    • /
    • v.30 no.2
    • /
    • pp.81-96
    • /
    • 2019
  • The behavior of a new Three-Tube Buckling-Restrained Brace (TTBRB) with circumference pre-stress (${\sigma}_{{\theta},pre}$) in core tube are investigated through a verified finite element model. The TTBRB is composed of one core tube and two restraining tubes. The core tube is in the middle to provide the axial stiffness, to carry the axial load and to dissipate the earthquake energy. The two restraining tubes are at inside and outside of the core tube, respectively, to restrain the global and local buckling of the core tube. Based on the yield criteria of fringe fiber, a design method for restraining tubes is proposed. The applicability of the proposed design equations are verified by TTBRBs with different radius-thickness ratios, with different gap widths between core tube and restraining tubs, and with different levels of ${\sigma}_{{\theta},pre}$. The outer and inner tubes will restrain the deformation of the core tube in radius direction, which causes circumference stress (${\sigma}_{\theta}$) in the core tube. Together with the ${\sigma}_{{\theta},pre}$ in the core tube that is applied through interference fit of the three tubes, the yield strength of the core tube in the axial direction is improved from 160 MPa to 235 MPa. Effects of gap width between the core tube and restraining tubes, and ${\sigma}_{{\theta},pre}$ on hysteretic behavior of TTBRBs are presented. Analysis results showed that the gap width and the ${\sigma}_{{\theta},pre}$ can significantly affect the hysteretic behavior of a TTBRB.

Evaluation of the marginal and internal gaps of three different dental prostheses: comparison of the silicone replica technique and three-dimensional superimposition analysis

  • Park, Jin-Young;Bae, So-Yeon;Lee, Jae-Jun;Kim, Ji-Hwan;Kim, Hae-Young;Kim, Woong-Chul
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.3
    • /
    • pp.159-169
    • /
    • 2017
  • PURPOSE. The purposes of this study were to evaluate the marginal and internal gaps, and the potential clinical applications of three different methods of dental prostheses fabrication, and to compare the prostheses prepared using the silicone replica technique (SRT) and those prepared using the three-dimensional superimposition analysis (3DSA). MATERIALS AND METHODS. Five Pekkton, lithium disilicate, and zirconia crowns were each manufactured and tested using both the SRT and the two-dimensional section of the 3DSA. The data were analyzed with the nonparametric version of a two-way analysis of variance using rank-transformed values and the Tukey's post-hoc test (${\alpha}=.05$). RESULTS. Significant differences were observed between the fabrication methods in the marginal gap (P < .010), deep chamfer (P < .001), axial wall (P < .001), and occlusal area (P < .001). A significant difference in the occlusal area was found between the two measurement methods (P < .030), whereas no significant differences were found in the marginal gap (P > .350), deep chamfer (P > .719), and axial wall (P > .150). As the 3DSA method is three-dimensional, it allows for the measurement of arbitrary points. CONCLUSION. All of the three fabrication methods are valid for measuring clinical objectives because they produced prostheses within the clinically acceptable range. Furthermore, a three-dimensional superimposition analysis verification method such as the silicone replica technique is also applicable in clinical settings.

Determination of Stereotactic Target Position with MR Localizer (자기공명영상을 이용한 두개부내 표적의 3차원적 위치결정)

  • 최태진;김옥배;주양구;서수지;손은익
    • Progress in Medical Physics
    • /
    • v.7 no.2
    • /
    • pp.67-77
    • /
    • 1996
  • Purpose: To get a 3-D coordinates of intracranial target position was investicated in axial, sagittal and coronal magnetic resonance imaging with a preliminary experimented target localizer. Material and methods : In preliminal experiments, the localizer is made of engineering plastic to avoid the distrubance of magnetic field during the MR image scan. The MR localizer displayed the 9 points in three different axial tomogram. The bright signal of localizer was obtjained from 0.1~0.3% of paramagnetic gadolinium/DTPA solution in T1WI or T2WI. In this study, the 3-D position of virtual targets were examined from three different axial MR images and the streotactic position was compared to that of BRW stereotactic system in CT scan with same targets. Results: This study provided the actual target position could be obtained from single scan with MRI localizer which has inverse N-typed 9 bars. This experiment was accomplished with shimming test for detection of image distortion in MR image. However we have not found the image distortion in axial scan. The maximum error of target positions showed 1.0 mm in axial, 1.3 mm for sagittal and 1.7 mm for coronal image, respectivelly. The target localization in MR localizer was investicated with spherical virtual target in skull cadaver. Furthermore, the target position was confirmed with CRW stereotactic system showed a 1.3 mm in discrepancy. Summary : The intracranial target position was determined within 1.7 mm of discrepancy with designed MR localizer. We found the target position from axial image has more small discrepancy than that of sagittal and coronal image.

  • PDF

A study on the deviation angle of the rotating blade row in an axial- flow compressor (軸流壓縮機 回轉翼列의 流出偏差角에 관한 硏究)

  • 조강래;방영석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.6
    • /
    • pp.1407-1414
    • /
    • 1988
  • Deviation angles are predicted by numerical calculation of three-dimensional compressible flow through the rotating blade row in axial flow compressor. Three-dimensional flow fields are analyzed by the quasi three-dimensional combination of blade-to blade surfaces and hub-to shroud stream surfaces and calculated by the finite element method in the cyclic calculation of both stream surfaces. In the blade-to blade calculations the method of boundary stream line correction is used and in the hub-to shroud calculations the loss effects due to viscous flow are included. The computational results are compared with the available experimental one. It is shown that the computational results from blade-to-blade flow calculation are correct for incompressible, compressible low subsonic and high subsonic flow at the inlet, and the loss effects on the deviation angle can be neglected in the range of the subsonic flow less than the critical Mach number for the axisymmetric flow and even for 3-D non-axisymmetric flow with loss. And it is found that the present results are better agreed with the experimental data than Lieblein's one.

A Study on the Structural Safety Analysis for Vinyl House at Snow Load (비닐하우스의 적설하중 구조안전성 검토에 관한 연구)

  • Paik, Shinwon
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.2
    • /
    • pp.34-39
    • /
    • 2019
  • Vinyl house consists of main rafter, lateral member, clamps and polyethylene film. Many vinyl houses are used in the countryside to grow vegetables. These vinyl houses have occasionally been collapsed due to heavy snowfall in winter. Many farmers get a lot of economical damages, if vinyl houses are collapsed. So it is most important to built a safe vinyl house that can withstand heavy snowfall. In this study, a structural analysis was performed on three types of vinyl houses(07-single-01, 10-single-04, 12-single-01). In addition, the structural analysis of the three types of vinyl houses provided axial forces, flexural moment, and combined stress. For these three types of vinyl houses, structural safety was reviewed by obtaining the combined stress ratio by the strength design method. This structural review showed that the specifications for the vinyl house proposed in the design are not safe. Especially, the result of increasing the design snow load by 15 percent and 30 percent showed that the vinyl house structure constructed as a standard for vinyl house was a more dangerous structure. Therefore, it is necessary to revise regulations such as increasing the thickness of rafters or widening the gap in order to make vinyl houses structurally safe for heavy snowfall in the future, and to devise diverse methods to make vinyl houses that are structurally safe.

Structural Behavior of Reinforced Concrete Members Subjected to Axial and Blast Loads Using Nonlinear Dynamic Analysis (비선형 동적해석을 이용한 축하중과 폭발하중을 동시에 받는 철근콘크리트 부재의 구조 거동 분석)

  • Lee, Seung-Hoon;Kim, Han-Soo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.3
    • /
    • pp.141-148
    • /
    • 2022
  • In this study, the structural behavior of reinforced concrete members under simultaneous axial and blast loads was analyzed. Nonlinear dynamic analysis verification was performed using the experimental data of panels under fundamental blast load as well as those of reinforced concrete columns subjected to axial and blast loads. Because Autodyn is a program designed only for dynamic analysis, an analysis process is devised to simulate the initial stress state of members under static loads, such as axial loads. A total of 80 nonlinear dynamic finite element analysis procedures were conducted by selecting parameters corresponding to axial load ratios and scaled distances ranging 0%~70% and 1.1~2.0 (depending on the equivalent of TNT), respectively. The structural behavior was compared and analyzed with the corresponding degree of damage and maximum lateral displacement through the changes in axial load ratio and scaled distance. The results show that the maximum lateral displacement decreases due to the increase in column stiffness under axial loads. In view of the foregoing, the formulated analysis process is anticipated to be used in developing blast-resistant design models where structural behavior can be classified into three areas considering axial load ratios of 10%~30%, 30%~50%, and more than 50%.

Degradation Characteristics of Symmetric Unbraced Steel Frames According to Variations of Member Stiffness and Axial ratio (축력비 및 부재강성에 따른 강구조 대칭형 비가새 골조의 열화특성)

  • Lee, Myung-Jae;Kim, Hee-Dong;Lim, Yoo-Ha
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.3
    • /
    • pp.327-335
    • /
    • 2011
  • This study has two objectives: (1) to evaluate the degradation characteristics of symmetric unbraced steel frames by using analytical approach, and (2) to suggest equation which can approximately estimate the effect of degradation during the schematic design stage. For the analytical approach, the refined plastic hinge method with an arc length algorithm was adopted. The subject of analysis was one story one-bay, multistory one-bay, and multistory three-bay unbraced steel frames. The main parameters of the analytical approach include the stiffness ratio of column to beam and the axial force ratio. The study led to the following conclusions. The normalized stiffness of degradations is affected by both stiffness ratio of column to beam and the axial load ratio; however, the major influence on degradations is the axial force ratio. The equation, which can approximately estimate the effect of degradation, was suggested together with the research results.

Numerical Investigation on Multi-stage Axial Fan and Compressor for Considering Pressure Losses by Instrumentation and Area-averaged Properties (측정장치 압력손실과 면적평균 물리량 보정을 위한 다단 축류 팬과 압축기의 수치해석적 연구)

  • CHOI, JAEHO;KIM, SEMI;LEE, WONSUK;CHOI, TAEWOO;KIM, JINWOOK
    • Journal of Hydrogen and New Energy
    • /
    • v.29 no.4
    • /
    • pp.401-409
    • /
    • 2018
  • A numerical investigation has been conducted to find the effects of pressure losses by struts and rakes, and averaging methods on the performance of a multi-stage axial fan and a multi-stage axial compressor. Struts and rakes which produce pressure losses are installed upstream of the aerodynamic inlet plane in the fan and the compressor rigs. Some of normal stator vanes are substituted with thick vanes with total pressure probes to measure total pressure between stages. Three-dimensional Reynolds-averaged Navier- Stokes equations with $k-{\omega}$ SST turbulence model were applied to analyze the pressure losses by the struts, inlet rakes, and thick instrumented vanes. The hexahedral grids were used to construct computational domain. Inlet pressure losses were evaluated for the compressor as a function of Mach number. The passage pressure losses due to the instrumented vanes were evaluated at the two speed lines in the fan. Total properties, such as pressure and temperature, were evaluated at the exit of the fan and the compressor with two different averaging methods which are area-averaging and mass-averaging, respectively.