• Title/Summary/Keyword: Three-Phase Composites

Search Result 66, Processing Time 0.022 seconds

Analytical Study on Effective Thermal Conductivity of Three-Phase Composites (3상 복합재의 등가열전도계수 예측에 대한 연구)

  • Lee, Jae-Kon;Kim, Jin-Gon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.7
    • /
    • pp.2931-2938
    • /
    • 2011
  • Effective thermal conductivity of three-phase composites, consisting of matrix and two kinds of spherical inclusions, has been derived as an explicit form by extending modified Eshelby model (MEM) for two-phase composites. The present results are compared with those by differential effective medium model (DEMM), which are also compared with the experimental results of two- and three-phase composites in the literatures to be validated. For two-phase composites, the results by MEM are better than those by DEMM for the inclusion volume fraction smaller than 0.5. Comparisons between the results by two models and experimental results have been made for three-phase composite, resulting in that MEM predicts better than DEMM for smaller volume fraction of the inclusion having larger inclusion-to-matrix thermal conductivity ratio, but DEMM predicts better as its volume fraction increases. It has been observed through parametric study that its volume fraction is the critical factor affecting the deviation of predictions by the two models. The results by them show a good agreement with the three-phase composite proposed by Molina et al..

Effect of Interface in Three-phase Cord-Rubber Composites (세 가지 상을 갖는 코드섬유-고무 복합재료의 계면의 영향)

  • Kim, Jong-Kuk;Yum, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.11
    • /
    • pp.1249-1255
    • /
    • 2009
  • Cord-rubber composites widely used in tires show very complicated mechanical behavior such as nonlinearity and large deformation. Three-phase(cord, rubber and the interface) modeling has been used to analyze the stress distribution in the cord-rubber composites more accurately. In this study, finite element methods were performed using two-dimensional generalized plane strain element and plane strain element to investigate the stress distribution and effective modulus of cord-rubber composites. Neo Hookean model was used for rubber property and several interface properties were assumed for various loading directions. It was found that the interface properties affect the effective modulus and the distributions of shear stress.

Elasticity and Conduction analysis of multi-Phase, Misoriented Metal matrix Composites (방향분포를 가진 다상 금속복합재료의 탄성 및 전도해석에 관한 연구)

  • 정현조
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.9
    • /
    • pp.2181-2193
    • /
    • 1995
  • The effective elasticity and conduction of composite materials containing arbitrarily oriented multiple phases has been analyzed using the concept of orientation-dependent average fields and concentration factors. The analysis provided closed form expressions for the effective stiffnesses and conductivities. Under the prescribed boundary conditions, the concentration factors were evaluated by the equivalent inclusion principle, through which the interaction between various phases is approximated by the Mori-Tanaka mean-field approximation. SiC particulate(SiC$_{p}$) reinforce aluminum(Al) matrix composites were fabricated and their elastic constants and electrical conductivities were measured together with a careful study of their microstructure. The measured properties showed a systematic anisotropy and this behavior could be attributed to the preferred orientation of SiC$_{p}$. The theoretical model developed was applied to the computation of the anisotropic properties of these composites. Both two-phase and three-phase composites were considered based on the microstructural information. The SiC$_{p}$ was modeled as an ellipsoid with planar random orientation distribution in the extruded Al/SiC$_{p}$ composites. The effect of extraneous phase such as intermetallic compounds was also investigated.tigated.

Fracture Properties of Carbon Coated LPS-SiCf/SiC Composites (액상소결을 이용한 탄소코팅 SiCf/SiC복합재료의 파괴특성)

  • Kim, Sung-Won;Lee, Moon-Hee;Hwang, Seung-Kuk;Lee, Sang-Pill
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.2
    • /
    • pp.149-155
    • /
    • 2017
  • Mechanical properties of carbon coated $SiC_f/SiC$ composites have been investigated, in conjunction with a detailed analysis of microstructure. Especially, the fracture behavior of $SiC_f/SiC$ composites by the induction of carbon coating layers has been examined. The matrix region of $SiC_f/SiC$ composites with ultra-fine SiC powders were consolidated by a liquid phase sintering (LPS) process, using a sintering additive of $Al_2O_3-Y_2O_3$ powder compound. In this composite, plain and satin- woven Tyranno SA fabrics were also utilized as a reinforcing material. A carbon interfacial layer was coated around satin-woven SiC fabrics. The characterization of LPS-$SiC_f/SiC$ composites was investigated by means of SEM and three point bending test.

Analysis of the Strength Property for TiC-Mo Composites at High Temperature

  • Shin, Soon-Gi
    • Korean Journal of Materials Research
    • /
    • v.24 no.4
    • /
    • pp.201-206
    • /
    • 2014
  • TiC-21 mol% Mo solid solution (${\delta}$-phase) and TiC-99 mol% Mo solid solution (${\beta}$-phase), and TiC-(80~90) mol% Mo hypo-eutectic composite were deformed by compression in a temperature range from room to 2300 K and in a strain rate range from $4.9{\times}10^{-5}$ to $6.9{\times}10^{-3}/s$. The deformation behaviors of the composites were analyzed from the strengths of the ${\delta}$- and ${\beta}$-phases. It was found that the high strength of the eutectic composite is due primarily to solution hardening of TiC by Mo, and that the ${\delta}$-phase undergoes an appreciable plastic deformation at and above 1420 K even at 0.2% plastic strain of the composite. The yield strength of the three kinds of phase up to 1420 K is quantitatively explained by the rule of mixture, where internal stresses introduced by plastic deformation are taken into account. Above 1420 K, however, the calculated yield strength was considerably larger than the measured strength. The yield stress of ${\beta}$-phase was much larger than that of pure TiC. A good linear relationship was held between the yield stress and the plastic strain rate in a double-logarithmic plot. The deformation behavior in ${\delta}$-phase was different among the three temperature ranges tested, i.e., low, intermediate and high. At an intermediate temperature, no yield drop occurred, and from the beginning the work hardening level was high. At the tested temperature, a good linear relationship was held in the double logarithmic plot of the yield stress against the plastic strain rate. The strain rate dependence of the yield stress was very weak up to 1273 K in the hypo-eutectic composite, but it became stronger as the temperature rose.

Effective Conductivity of Disordered Three-Phase Media (비정상 3상소재의 유효전도율)

  • Kim, In-Chan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.3
    • /
    • pp.910-932
    • /
    • 1996
  • A problem of determining the effective conductivity of a useful model of sphere-matrix type, disordered three-phase composite media is considered. Specifically, a three-phase media in which two-phase composite spheres, consisting of spheres of conductivity $k_2$((phase 2) and concentric shells of conductivity $k_3$(phase 3), are randomly distributed in a matrix of conductivity $k_1$( (phase 1) is considered. As for the structure models configuring three-phase composite media, three different structure models of PCS, PS-1 and PS-2 models are defined, which are analogous to well-established PCS, PS structure models of two-phase composite media. Futhermore, a generalized PS-PCS structure model is proposed to incorporate thesee three different models in one. Effective condectivity $k^{\ast}$of multiphaes composite media is greatly influenced by the phase connectivity of each disspersed phase material, as well as phase conductivities and phase volume fractions. Phase connectivity of three-phase PCS, PS-1, PS-2 composite media is quantified by the impentrability parameter $\lambda$. Mathematically rigorous first-order cluster bounds on $k^{\ast}$ are derived for these models of three-phase composite media, and as computation examples, first-order cluster bounds on $k^{\ast}$ for three-phase composites consisting of largely different phase conductivities are computed and compared as function of concnectivity parpmeter $\lambda$. Results and discussions are given.

Mechanical Properties of Particle and Fiber Reinforced SMC Composites (입자와 섬유로 보강된 SMC 복합재의 기계적 특성에 관한 연구)

  • 정현조;윤성호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.2
    • /
    • pp.173-182
    • /
    • 1996
  • An analytical model has been developed to predict the elastic properties of a filled resin reinforced by chopped fibers, a three-phase composite such as a filled sheet molding compound(SMC). In the model the matrix material and fillers form an effective matrix. The effective matrix is then considered to be reinforced with long fibers lying in the sheet plane but randomly oriented in the plane. Expressions for the resulting transversely isotropic composite properties are explicitly presented. Using this model, the Young's and shear moduli are calculated for the SMC sample with filler weight fraction of 35% and fiber content of 30%. The same properties are also determined experimentally. The agreement between the calculated and measured elastic moduli is found to be very good for the in-plane properties. However, the out-of-plane properties show a large difference because the effect of voids is not taken into account in the model.

  • PDF

Effect of Interface on the Properties of Cord-Rubber Composites (코드섬유-고무 복합재료의 물성치에 대한 계면의 영향)

  • Lim, Hyun-Woo;Kim, Jong-Kuk;Yum, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.5
    • /
    • pp.583-588
    • /
    • 2010
  • The nonlinearity and high deformability of rubber make accurate analysis of the behavior of cord-rubber composites a challenging task. Some researchers have adopted the third phase between cord and rubber and have carried out three-phase modeling. However, it is difficult to determine the thickness and properties of the interface in cord-rubber composites. In this study, a two-dimensional finite-element method (2D FEM) is used to investigate the effective and normalized moduli of cord-rubber composites having interfaces of various thicknesses; this model takes into account the 2D generalized plane strain and a plane strain element. The neo-Hookean model is used for the properties of rubber, several interface properties are assumed and three loading directions are selected. It is found that the properties and thickness of the interface can affect the nonlinearity and the effective modulus of cord-rubber composites.

Effect of Particle Size and Dispersion on Dielectric Properties in ZnO/Epoxy Resin Composites

  • Yang, Wenhu;Yi, Ran;Yang, Xu;Xu, Man;Hui, Sisi;Cao, Xiaolong
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.3
    • /
    • pp.116-120
    • /
    • 2012
  • In this paper, ZnO-Epoxy nanocomposites (NEP) were prepared and epoxy composites that contain 5 wt% micro ZnO (MEP) and deliberately not well dispersed nano ZnO (NDNEP) were also prepared for purpose of comparison. The effects of the particle size and dispersion of ZnO on dielectric properties of epoxy resin were chiefly studied. Test results showed that: at a loading of 5 wt%, the three epoxy composites seem to have no significant difference on resistivity compared to epoxy resin; Dielectric constants of all the epoxy composites are also basically the same but they are bigger compared to that of the pure epoxy resin (unfilled); Dielectric dissipation factors ($tan{\delta}$) of NDNEP is greater than that of NEP and MEP. NEP has the minimum dielectric loss factor, whereas dielectric loss factors of the three epoxy composites are larger than that of the pure epoxy resin. The decreasing order of electrical breakdown strength for the three epoxy composites and for the pure epoxy resin is as follows: NEP>MEP>NDNEP>EP. Finally, in order to explain the experimental results the aggregation interface phase was proposed. Furthermore, addition of well dispersed nano filler has proved to have a positive effect on the improvement of the dielectric properties of epoxy resin.

Property Evaluation of Reaction Sintered SiC/SiC Composites Fabricated by Melt Infiltration Process (용융함침법에 의한 반응소결 SiC/SiC 복합재료의 특성 평가)

  • Lee, Sang-Pill;Shin, Yun-Seok;Kohyama, Akira
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.2 s.257
    • /
    • pp.205-210
    • /
    • 2007
  • SiC/SiC composites and monolithic SiC materials have been fabricated by the melt infiltration process, through the creation of crystallized SiC phase by the chemical reaction of C and Si. The reinforcing material used in this system was a braided Hi-Nicalon SiC fiber with double interphases of BN and SiC. The microstructures and the mechanical properties of RS-SiC based materials were investigated through means of SEM, TEM, EDS and three point bending test. The matrix morphology of RS-SiS/SiC composites was greatly composed of the SiC phases that the chemical composition of Si and C is different. The TEM analysis showed that the crystallized SiC phases were finely distributed in the matrix region of RS-SiC/SiC composites. RS-SiC/SiC composites also represented a good flexural strength and a high density, accompanying a pseudo failure behavior.