• Title/Summary/Keyword: Three-Phase

Search Result 6,288, Processing Time 0.044 seconds

Modified Direct Torque Control System of Five Phase Induction Motor

  • Kim, Nam-Hun;Kim, Min-Huei
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.266-271
    • /
    • 2009
  • In this paper, improved direct torque control(DTC) of five-phase induction motor(IM) is proposed. Due to the additional degrees of freedom, five-phase IM drives present unique characteristics. One of them is the ability of enhancing the torque producing capability of the motor. Also five-phase motor drives possess many others advantage compared with the traditional three-phase motor drives. Such as, reducing the amplitude and increasing of frequency of torque pulsation, reducing amplitude of current per phase without increasing the voltage per phase and increasing the reliability. The direct torque control method is advantageous when it is applied to the five-phase IM. Because the five-phase inverter provides 32 space vectors in comparison to 8 space voltage vectors by the three-phase inverter. The 32 space voltage vectors are divided into three groups according to their magnitudes. The characteristics and dynamic performance of traditional five-phase DTC are analyzed and new DTC for five-phase IM is proposed. Therefore, a more precise flux and torque control algorithm for the five-phase IM drives can be suggested and explained. For presenting the superior performance of the pro-posed direct torque control, experimental results is presented using a 32 bit fixed point TMS320F2812 digital signal processor

Instantaneous Power Compensation Theory in Three-phase Four-wire Systems (3상 4선 계통에서의 순시전력 보상이론)

  • Kim, Hyo-Sung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.2
    • /
    • pp.172-183
    • /
    • 2006
  • This paper analyzes instantaneous power compensation theory through comparing p-q theory and cross-vector theory which were proposed by Akagi and Nabae respectively in three-phase four-wire systems. The two compensation theories are identical when there is no zero-sequence voltage component in three-phase three-wire systems, However, when the zero-sequence voltage and/or current components exist in three-phase four-wire systems, the two compensation theories we different in definition on instantaneous real power and instantaneous imaginary power. Based on the analysis, this paper presents instantaneous power compensation method that can eliminate neutral current completely without using energy storage element when the zero-sequence current and voltage components exist in three-phase four-wire systems.

Three-Phase Current Source Type ZVS-PWM Controlled PFC Rectifier with Single Active Auxiliary Resonant Snubber and Its Feasible Evaluations

  • Masayoshi Yamamoto;Shinji Sato;Tarek Ahmed;Eiji Hiraki;Lee, Hyun-Woo;Mutsuo Nakaoka
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.4B no.3
    • /
    • pp.127-133
    • /
    • 2004
  • This paper presents a prototype of three-phase current source zero voltage soft-switching PWM controlled PFC rectifier with Single Active Auxiliary Resonant Commutated Snubber (ARCS) circuit topology. The proposed three-phase PFC rectifier with sinewave current shaping and unity power factor scheme can operate under a condition of Zero Voltage Soft Switching (ZVS) in the main three phase rectifier circuit and zero current soft switching (ZCS) in auxiliary snubber circuits. The operating principle and steady-state performances of the proposed three-phase current source soft-switching PWM controlled PFC rectifier controlled by the DSP control implementation are evaluated and discussed on the basis of the experimental results of this active rectifier setup.

New Resonant AC Link Snubber-Assisted Three-Phase Soft-Switching PWM Inverter and Its Comparative Characteristics Evaluations

  • Yoshida, Masanobu;Hiraki, Eiji;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.3 no.4
    • /
    • pp.239-248
    • /
    • 2003
  • This paper presents a novel prototype of three-phase voltage source type zero voltage soft-switching inverter with the auxiliary resonant snubbers suitable for high-power applications with IGBT power module packages in order to reduce their switching power losses as well as electromagnetic conductive and radiative noises. A proposed single inductor-assisted resonant AC link snubber circuit topology as one of some auxiliary resonant commutation snubbers developed previously to achieve the zero voltage soft-switching (ZVS) for the three-phase voltage source type sinewave PWM inverter operating under the instantaneous space voltage vector modulation is originally demonstrated as compared with the other types of resonant AC link snubber circuit topologies. In addition to this, its operation principle and unique features are described in this paper. Furthermore, the practical basic operating performances of the new conceptual instantaneous space voltage vector modulation resonant AC link snubber-assisted three-phase voltage source type soft-switching PWM inverter using IGBT power module packages are evaluated and discussed on the basis of switching voltage and current waveforms, output line to line voltage quality, power loss analysis, actual power conversion efficiency and electromagnetic conductive and radiative noises from an experimental point of view, comparing with those of conventional three-phase voltage source hard-switching PWM inverter using IGBT power modules.

Analysis and Control of NPC-3L Inverter Fed Dual Three-Phase PMSM Drives Considering their Asymmetric Factors

  • Chen, Jian;Wang, Zheng;Wang, Yibo;Cheng, Ming
    • Journal of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.1500-1511
    • /
    • 2017
  • The purpose of this paper is to study a high-performance control scheme for neutral-point-clamping three-level (NPC-3L) inverter fed dual three-phase permanent magnet synchronous motor (PMSM) drives by considering some asymmetric factors such as the non-identical parameters in phase windings. To implement this, the system model is analyzed for dual three-phase PMSM drives with asymmetric factors based on the vector space decomposition (VSD) principle. Based on the equivalent circuits, PI controllers with feedforward compensation are used in the d-q subspace for regulating torque, where the cut-off frequency of the PI controllers are set at the twice the fundamental frequency for compensating both the additional DC component and the second order component caused by asymmetry. Meanwhile, proportional resonant (PR) controllers are proposed in the x-y subspace for suppressing the possible unbalanced currents in the phase windings. A dual three-phase space vector modulation (DT-SVM) is designed for the drive, and the balancing factor is designed based on the numerical fitting surface for balancing the DC link capacitor voltages. Experimental results are given to demonstrate the validity of the theoretical analysis and the proposed control scheme.

Variable-Speed Prime Mover Driving Three-Phase Self-Excited Induction Generator with Static VAR Compensator Voltage Regulation-Part H : Simulation and Experimental Results-

  • Ahmed, Tarek;Nagai, Schinichro;Soshin, Koji;Hiraki, Eiji;Nakaoka, Mutsuo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.3B no.1
    • /
    • pp.10-15
    • /
    • 2003
  • This paper presents the digital computer performance evaluations of the three-phase self-excited induction generator (SEIG) driven by the variable speed prime mover such as the wind turbine using the nodal admittance approach steady-state frequency domain analysis with the experimental results. The three-phase SEIG setup is implemented for small-scale rural renewable energy utilizations. The experimental performance results give a good agreement with those ones obtained from the digital computer simulation. Furthermore, a feedback closed-loop voltage regulation of the three-phase SEIG as a power conditioner which is driven by a variable speed prime mover employing the static VAR compensator (SVC) circuit composed of the thyristor phase controlled reactor (TCR) and the thyristor switched capacitor(TSC) is designed and considered herein for the wind-turbine driven the power conditioner. To validate the effectiveness of the SVC-based voltage regulator of the terminal voltage of the three-phase SEIG, an inductive load parameter disturbances in stand-alone are applied and characterized in this paper. In the stand-alone power utilization system, the terminal voltage response and thyristor triggering angle response of the TCR are plotted graphically. The simulation and the experimental results prove the effectiveness and validity of the proposed SVC which is controlled by the Pl controller in terms of fast response and high performances of the three-phase SEIG driven directly by the rural renewable energy utilization like a variable-speed prime mover.

Model of Photovoltaic Systems for 3 Phase Power Flow (3상 조류 계산을 위한 Photovoltaic 시스템 모델)

  • Ryan, Diolata;Song, Hwa-Chang
    • Proceedings of the KIEE Conference
    • /
    • 2007.11b
    • /
    • pp.311-313
    • /
    • 2007
  • Three phase power flow is commonly considered exclusively for the distribution systems, where single or double phase circuits may be present and loads may not always balanced between the three phases. This paper deals with modelling and analysis of grid connected photovoltaic (PV) system in three-phase power flow, with the consideration of the PV inverter output power limitations.

  • PDF

Simulation of three-phase symmetrical squirrel cage induction motors with double rotor bars (대칭3상2중롱형유도전동기의 시뮬레이션)

  • 임달호;이은웅;장석명;구태만
    • 전기의세계
    • /
    • v.30 no.6
    • /
    • pp.366-374
    • /
    • 1981
  • In most cases, simulation of induction machines under dynamic conditions have been based on two-phase models using constant circuit parameters. Squirrel cage induction machines with double rotor bars which are made for high starting torgue have lower rotor bars of sufficient depth they cannot be accurately represented by a constant rotor resistance under all operating condition. In this paper, the circuit of three-phase symmetrical induction machines is represented in two-axis model by tensor. A method for simulating three-phase squirrel cage induction machines in a dynamic conditions is presented, and the current distribution in double rotor bars is calculated under dynamic conditions.

  • PDF

Analysis of Three Phase Interleaved Boost Converter for Photovoltaic PCS (태양광 발전 PCS용 3상 인터리브드 부스트 컨버터 해석)

  • Cha, Han-Ju;Kang, Young-Ju
    • Proceedings of the KIEE Conference
    • /
    • 2009.04b
    • /
    • pp.168-170
    • /
    • 2009
  • This article analyzes a three phase interleaved boost converter for photovoltaic PCS, and compares with a single phase boost converter. The advantage of this approach, such as higher efficiency and reduced input and output ripple, are demonstrated by a three phase boost converter simulation.

  • PDF

A Peak Detector for Variable Frequency Three-Phase Sinusoidal Signals (가변주파수 3상 정현파 신호의 최대전압 검출기)

  • 김홍렬
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.2
    • /
    • pp.210-215
    • /
    • 1999
  • The proposed detector is consists of three-phase sinusoidal signal generator and peak detector. This peak detector can detect the peak voltage value at the state of variable frequency. In experi-ment three-phase sinusoidal signals are generated from D/A converter using IBM PC and deliv-ered to the peak detector. Each signals are squared by multiplier and summed up Peak value is the square root of summed value extracted by square root circuit.

  • PDF