• 제목/요약/키워드: Three-Dimensional Use

검색결과 1,293건 처리시간 0.028초

한국인의 3차원 무릎관절 구축 및 형상 측정 (Construction and Measurement of Three-Dimensional Knee Joint Model of Koreans)

  • 박기봉;김기범;손권;서정탁;문병영
    • 대한기계학회논문집A
    • /
    • 제28권11호
    • /
    • pp.1664-1671
    • /
    • 2004
  • It is necessary to have a model that describes the feature of the knee Joint with a sufficient accuracy. Koreans, however, do not have their own knee joint model to be used in the total knee replacement arthroplasty. They have to use European or American models which do not match Koreans. Three-dimensional visualization techniques are found to be useful in a wide range of medical applications. Three-dimensional imaging studies such as CT(computed tomography) and MRI(magnetic resonance image) provide the primary source of patient-specific data. Three-dimensional knee joint models were constructed by image processing of the CT data of 10 subjects. Using the constructed model, the dimensions of Korean knee joint were measured. And this study proposed a three-dimensional model and data, which can be helpful to develop Korean knee implants and to analyze knee joint movements.

Three Dimensional Positioning Accuracy of KOMPSAT-1 Stereo Imagery

  • Jeong, Soo;Kim, Yong-Soo
    • 대한원격탐사학회지
    • /
    • 제16권4호
    • /
    • pp.339-345
    • /
    • 2000
  • KOMPSAT-1 was launched on 21 December, 1999 and the main mission of the satellite is the cartography to provide the imagery from a remote earth view for the production of maps of Korean territory. For this purpose, the satellite has capability to tilt the spacecraft utmost $\pm$45 degrees to acquire stereo satellite imagery in different paths. This study aims to estimate the three dimensional positioning accuracy of stereo satellite imagery from EOC(electro-optical camera), a payload of KOMPSAT-1 satellite. For this purpose, the ground control points and check points were obtained by GPS surveying. The sensor modeling and the adjustment was performed by PCI software installed in KARI (Korea Aerospace Research Institute), which contained mathematical analysis module for KOMPSAT-1 EOC. The study areas were Taejon and Nonsan, placed in the middle part of Korea. As a result of this study, we found that the RMSE(root mean square error) value of three dimensional positioning KOMPST-1 stereo imagery can be less than 1 pixel (6.6 m) if we can use about 10 GCPs(ground control points). Then, a standarrd of FGDC (Federal Geographic Data Committee) of USA was applied to the result to estimate the three dimensional positioning accuracy of KOMPSAT-1 stereo imagery.

AR기술을 활용한 어린이 교육 어플리케이션 디자인 (Children's Education Application Design Using AR Technology)

  • 정혜경;고장혁
    • 반도체디스플레이기술학회지
    • /
    • 제20권4호
    • /
    • pp.23-28
    • /
    • 2021
  • Augmented reality is a technique for combining virtual images into real life by showing information of virtual 3D objects on top of a real-world environment (Azuma et al., 2001). This study is an augmented reality-based educational content delivery device that receives user input that selects either a preset object or a photographed object for augmented reality-based training; It includes a three-dimensional design generation unit that generates a stereoscopic model of the augmented reality environment from an object, a three-dimensional view of the scene, a disassembly process of the developing road from a three-dimensional model, and a content control unit provided by the user terminal by generating educational content including a three-dimensional model, a scene chart, a scene, a decomposition process, and a coupling process to build a coupling process from the scene to the three-dimensional model in an augmented reality environment. The next study provides a variety of educational content so that children can use AR technology as well as shapes to improve learning effectiveness. We also believe that studies are needed to quantitatively measure the efficacy of which educational content is more effective when utilizing AR technology.

Study on Aerodynamic Optimization Design Process of Multistage Axial Turbine

  • Zhao, Honglei;Tan, Chunqing;Wang, Songtao;Han, Wanjin;Feng, Guotai
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.130-135
    • /
    • 2008
  • An aerodynamic optimization design process of multistage axial turbine is presented in this article: first, applying quasi-three dimensional(Q3D) design methods to conduct preliminary design and then adopting modern optimization design methods to implement multistage local optimization. Quasi-three dimensional(Q3D) design methods, which mainly refer to S2 flow surface direct problem calculation, adopt the S2 flow surface direct problem calculation program of Harbin Institute of Technology. Multistage local optimization adopts the software of Numeca/Design3D, which jointly adopts genetic algorithm and artificial neural network. The major principle of the methodology is that the successive design evaluation is performed by using an artificial neural network instead of a flow solver and the genetic algorithms may be used in an efficient way. Flow computation applies three-dimensional viscosity Navier Stokes(N-S) equation solver. Such optimization process has three features: (i) local optimization based on aerodynamic performance of every cascade; (ii) several times of optimizations being performed to every cascade; and (iii) alternate use of coarse grid and fine grid. Such process was applied to optimize a three-stage axial turbine. During the optimization, blade shape and meridional channel were respectively optimized. Through optimization, the total efficiency increased 1.3% and total power increased 2.4% while total flow rate only slightly changed. Therefore, the total performance was improved and the design objective was achieved. The preliminary design makes use of quasi-three dimensional(Q3D) design methods to achieve most reasonable parameter distribution so as to preliminarily enhance total performance. Then total performance will be further improved by adopting multistage local optimization design. Thus the design objective will be successfully achieved without huge expenditure of manpower and calculation time. Therefore, such optimization design process may be efficiently applied to the aerodynamic design optimization of multistage axial turbine.

  • PDF

수치사진측량 기법을 이용한 3차원 공간정보의 품질 분석 (Quality Analysis of Three-Dimensional Geo-spatial Information Using Digital Photogrammetry)

  • 이현직;유지호;김상연
    • 대한공간정보학회지
    • /
    • 제18권4호
    • /
    • pp.141-149
    • /
    • 2010
  • 3차원 공간정보는 효율적 국토이용 및 관리, 지자체의 도시계획수립, 도시관리 등 도시 활동의 입체적인 표현과 분석을 위한 중요한 정보로써 공공분야뿐만 아니라 공간정보 서비스 산업 활성화로 민간분야에서도 다양하게 이용되고 있다. 고품질 3차원 공간정보의 생성을 위해서는 원시영상 및 3차원 지형모델의 품질 뿐만 아니라 LoD 수준, Texturing과 같은 가시화 수준이 중요한 요소가 된다. 하지만 기존 3차원 국토공간정보는 구축 공정이 복잡하고, 기 제작된 수치지도를 이용하여 자료의 최신성이 부족하다. 또한 일반정사영상의 이용으로 영상의 기복변위가 존재하여 가시성이 낮고, LoD 수준이 2~3급 정도로 인공지물의 3차원 모델이 단순화 되어 현실감이 다소 부족하다는 단점이 있다. 이에 본 논문에서는 기존의 대축척 디지털항공사진카메라와 다방향 촬영 디지털카메라로 촬영된 디지털항공사진영상을 이용하여 수치사진측량기법을 적용한 3차원 모델링 기법으로 제작된 3차원 공간정보의 품질 분석을 수행하였다. 3차원 모델의 가시화 정보의 정확도 분석결과 별도의 가시화 정보의 획득 없이 원영상만으로 84% 이상의 정확도를 확보할 수 있었다. 촬영시기와 동일한 3차원 공간정보 구축이 가능하여 자료의 최신성 확보가 용이 하였고, 작업공정의 실감정사영상의 위치정확도 분석결과 1:1,000 수치지도의 수평위치 허용정확도보다 양호한 결과를 나타냈다.

ASYMPTOTICALLY LINEAR BEAM EQUATION AND REDUCTION METHOD

  • Choi, Q-Heung;Jung, Tacksun
    • Korean Journal of Mathematics
    • /
    • 제19권4호
    • /
    • pp.481-493
    • /
    • 2011
  • We prove a theorem which shows the existence of at least three ${\pi}$-periodic solutions of the wave equation with asymptotical linearity. We obtain this result by the finite dimensional reduction method which reduces the critical point results of the infinite dimensional space to those of the finite dimensional subspace. We also use the critical point theory and the variational method.

최적화된 PRBFNNs 패턴분류기와 PCA알고리즘을 이용한 3차원 얼굴인식 알고리즘 설계 : 진화 알고리즘의 비교 해석 (Design of Three-dimensional Face Recognition System Using Optimized PRBFNNs and PCA : Comparative Analysis of Evolutionary Algorithms)

  • 오성권;오승훈;김현기
    • 한국지능시스템학회논문지
    • /
    • 제23권6호
    • /
    • pp.539-544
    • /
    • 2013
  • 본 논문에서는 다항식 기반 RBFNNs를 이용하여 3차원 얼굴인식 알고리즘을 설계하고 인식률을 산출하는 방법을 제시한다. 2차원 얼굴인식의 경우 얼굴 포즈, 조명 등과 같은 외부 환경에 의해 인식률이 저하된다. 이러한 단점을 보완하기 위해 3차원 영상을 획득하여 얼굴인식을 수행한다. 얼굴인식을 수행하기 전에 3D스캐너를 통해 얻은 얼굴영상의 포즈 보상을 실시하고 얼굴의 형상을 정면으로 향하게 한다. 그리고 Point Signature 기법을 이용하여 얼굴의 깊이 값을 추출하게 된다. 추출된 데이터는 고차원 데이터로서 학습 및 인식을 수행함에 있어 문제가 생길 수 있기 때문에 PCA알고리즘을 수행하여 차원을 축소한 데이터를 사용한다. 효율적인 학습을 위해 최적화 알고리즘을 통해 파라미터 최적화를 수행하며 PSO, DE, GA 알고리즘을 사용하여 인식 성능을 확인한다.

시분할 방식을 이용한 3차원 초음파 풍향풍속계 측정기술 개발 (Development of 3 - Dimensional Ultrasonic Wind Direction Anemometer Measurement Technique Using Time Division Method)

  • 이우진;최재영;김경원;임재홍
    • 센서학회지
    • /
    • 제26권1호
    • /
    • pp.66-72
    • /
    • 2017
  • The three dimensional ultrasonic anemometer was constructed to reduce the disadvantages of the two-dimensional anemometer and to be free from the use environment. Three pairs of transmitting and receiving ultrasonic sensors were designed to face each other at an angle of $45^{\circ}$ to the upper and lower surfaces at intervals of $120^{\circ}$. 200 kHz ultrasonic sensor Oscillation, transmission and reception, level detection, power supply circuit were designed and U, V, W wind speed vector components were obtained by measuring the time of first received ultrasonic pulse by transmitting pulse ultrasound. It is implemented as firmware in ARM Coretex-M3 processor so that horizontal and vertical wind direction and wind speed can be converted into digital signal by vector calculation. In this study, The three-dimensional ultrasonic anemometer can complement the disadvantages of the two-dimensional anemometer (mechanical and ultrasonic), and it is expected to gradually replace the two-dimensional anemometer due to its high utilization rate by collecting additional information such as vertical wind.

Computational Implementation of Asymmetric Integral Imaging by Use of Two Crossed Lenticular Sheets

  • Shin, Dong-Hak;Cho, Myung-Jin;Kim, Eun-Soo
    • ETRI Journal
    • /
    • 제27권3호
    • /
    • pp.289-293
    • /
    • 2005
  • We propose an asymmetric integral imaging method to adjust the resolution and depth of a three-dimensional image. Our method is obtained by use of two lenticular sheets with different pitches fabricated under the same F/#. The asymmetric integral imaging is the generalized version of integral imaging, including both conventional integral imaging and one-dimensional integral imaging. We present experimental results to test and verify the performance of our method computationally.

  • PDF

Holographic femtosecond laser processing

  • Hayasaki, Yoshio
    • 한국광학회:학술대회논문집
    • /
    • 한국광학회 2008년도 하계학술발표회 논문집
    • /
    • pp.61-63
    • /
    • 2008
  • Parallel femtosecond laser processing using a computer-generated hologram (CGH) displayed on a liquid crystal spatial light modulator (LCSLM) is demonstrated. The use of the LCSLM enables to perform an arbitrary and variable patterning. This holographic femtosecond laser processing has advantages of high throughput and high light-use efficiency. A critical issue is to precisely control the intensities of the diffraction peaks of the CGH. We demonstrate some methods for the control of the diffraction peaks. We also demonstrate the laser processing with two-dimensional and three-dimensional parallelism.

  • PDF