• 제목/요약/키워드: Three-Dimensional Static and Dynamic Analysis

검색결과 109건 처리시간 0.025초

열 경계 조건이 다른 틸팅패드저널베어링의 성능 (Performance of Tilting Pad Journal Bearings with Different Thermal Boundary Conditions)

  • 서준호;황철호
    • Tribology and Lubricants
    • /
    • 제37권1호
    • /
    • pp.14-24
    • /
    • 2021
  • This study shows the effect of the thermal boundary condition around the tilting pad journal bearing on the static and dynamic characteristics of the bearing through a high-precision numerical model. In many cases, it is very difficult to predict or measure the exact thermal boundary conditions around bearings at the operating site of a turbomachine, not even in a laboratory. The purpose of this study is not to predict the thermal boundary conditions around the bearing, but to find out how the performance of the bearing changes under different thermal boundary conditions. Lubricating oil, bearing pads and shafts were modeled in three dimensions using the finite element method, and the heat transfer between these three elements and the resulting thermal deformation were considered. The Generalized Reynolds equation and three-dimensional energy equation that can take into account the viscosity change in the direction of the film thickness are connected and analyzed by the relationship between viscosity and temperature. The numerical model was written in in-house code using MATLAB, and a parallel processing algorithm was used to improve the analysis speed. Constant temperature and convection temperature conditions are used as the thermal boundary conditions. Notably, the conditions around the bearing pad, rather than the temperature boundary conditions around the shaft, have a greater influence on the performance changes of the bearing.

Accuracy and Reliability of The Spine-Pelvis Monitor to Record Three-Dimensional Characteristics of The Spine-Pelvic Motion

  • Kim, Jung-Yong;Yoon, Kyung-Chae;Min, Seung-Nam;Yoon, Sang-Young
    • 대한인간공학회지
    • /
    • 제31권2호
    • /
    • pp.345-352
    • /
    • 2012
  • Objective: The aim of this study is to evaluate the accuracy and reliability of Spine-Pelvis Monitor(SPM) that was developed to measure 3-dimensional motion of spine and pelvis using tilt sensor and gyro sensor. Background: The main cause of low back pain is very much associated with the task using the low back and pelvis, but no measurement technique can quantify the both spine and pelvis. Method: For testing the SPM, 125 angles from three anatomical planes were measured three times in order to evaluate the accuracy and reliability. The accuracy of SPM in measuring dynamic motion was evaluated using digital motion analysis system. The motion pattern captured by two measuring methods was compared with each other. In result, the percentage error and Cronbach coefficient alpha were calculated to evaluate the accuracy and reliability. Results: The percentage error was 0.35% in flexion-extension on sagittal plane, 0.43% in lateral bending on coronal plane, and 0.40% in twisting on transverse plane. The Cronbach coefficient alpha was 1.00, 0.99 and 0.99 in sagittal, coronal and transvers plane, respectively. Conclusion: The SPM showed less than 1% error for static measurement, and showed reasonably similar pattern with the digital motion system. Application: The results of this study showed that the SPM can be the measuring method of spine pelvis motion that enhances the kinematic analysis of low back dynamics.

실내 벽면녹화의 공간 계획 경향에 관한 연구 - 로비공간의 적용 사례를 중심으로 - (A Study on the Vertical Garden Design for Indoor Space - Focused on Green Wall in Lobby Space -)

  • 양새이;조성익
    • 한국실내디자인학회논문집
    • /
    • 제22권3호
    • /
    • pp.33-42
    • /
    • 2013
  • The purpose of this study was to analyze the design trend of the vertical garden design in the indoor space through the examples of green wall in the lobby space. For the analysis, this study looks into the 'Guide for the Building Greening System' to understand the technical consideration for the green wall. After that, the key design elements was drawn from existing green walls through the literature review and field survey and field-survey. The study picked six green walls which was completed after 2000 in the lobby space in Seoul. The major findings of this study were as follows: First, the design factors mainly depend on the plant selection, which leads to the outlook and texture of the vertical walls. The texture is expressed by the two-dimensional or three-dimensional planting methods which is related to the selection of plant species. Second, the vertical walls in the lobby area should be planned for the function of space which could be transition, human traffic, mood and attraction. Third, the vertical wall should be integrated with the surroundings in order to reinforces the dynamic or static space experience.

APR 1400급 원자로냉각재펌프의 내진해석 (Seismic Analysis of APR1400 Grade Reactor Coolant Pump)

  • 안창기;유제용;박진석;함지웅
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 추계학술대회 논문집
    • /
    • pp.325-330
    • /
    • 2011
  • RCP(Reactor coolant pump) must be designed to preserve it's functions on normal or abnormal environments and seismic event same as operating basis earthquake(OBE) and safe shutdown earthquake(SSE). Generally, there are static and dynamic analytical method which can be applied by a floor response spectrum or time history analysis for the seismic qualification. Initially, It was accomplished a detailed structural FE-model for finite element analysis on the bases of 3-dimensional solid model which was made by the RCP drawing. As the result of dynamic characteristic using the detailed FE-model, it's shown about 12Hz natural frequency of 1st bending mode shape and maximum displacement has 11mm with the structural bending by single-point response spectrum(SPRS) method at all elevation. But maximum displacement has 7.6mm by multi-point response spectrum(MPRS) method which was applied to the three floor response spectrum at each elevation. Therefore, On a large heighten structures as RCP, The application by SPRS method causes to be more conservative results. Finally, A simpled equivalent beam model which was developed by use of iteration of detailed FE-model is shown the result more similar with those of natural frequencies and SPRS analysis. And maximum equivalent stress and displacement of the simpled beam has verified with 180MPa and 7.1mm each at 15sec as results by SSE time history method.

  • PDF

탄성 다물체계 동역학을 기반으로 한 부유식 해상 풍력 발전기 타워의 구조 해석 (Structural Analysis of Floating Offshore Wind Turbine Tower Based on Flexible Multibody Dynamics)

  • 박광필;차주환;구남국;조아라;이규열
    • 대한기계학회논문집A
    • /
    • 제36권12호
    • /
    • pp.1489-1495
    • /
    • 2012
  • 본 논문에서는 부유식 플랫폼의 동적 거동을 고려하여 해상 풍력 발전기 타워의 구조 해석을 수행하였다. 풍력 발전기는 플랫폼, 타워, 낫셀, 허브 그리고 3 개의 블레이드로 구성된다. 타워는 3 차원 빔 요소를 사용하여 탄성체로 모델링하여 탄성 다물체계 동역학을 기반으로 한 운동 방정식을 구성하였다. 회전하는 블레이드에는 블레이드 요소 운동량 이론에 따라 계산된 공기역학적 힘이 적용되었고, 부유식 플랫폼에는 유체정역학적 힘, 유체동역학적 힘 그리고 계류력이 적용되었다. 타워의 구조 동역학적 거동을 수치적으로 시뮬레이션하였다. 시뮬레이션 결과를 이용하여 굽힘 모멘트와 응력을 산출하고 허용치와 비교하였다.

On the kinematic coupling of 1D and 3D finite elements: a structural model

  • Yue, Jianguang;Fafitis, Apostolos;Qian, Jiang
    • Interaction and multiscale mechanics
    • /
    • 제3권2호
    • /
    • pp.192-211
    • /
    • 2010
  • In most framed structures the nonlinearities and the damages are localized, extending over a limited length of the structural member. In order to capture the details of the local damage, the segments of a member that have entered the nonlinear range may need to be analyzed using the three-dimensional element (3D) model whereas the rest of the member can be analyzed using the simpler one-dimensional (1D) element model with fewer degrees of freedom. An Element-Coupling model was proposed to couple the small scale solid 3D elements with the large scale 1D beam elements. The mixed dimensional coupling is performed imposing the kinematic coupling hypothesis of the 1D model on the interfaces of the 3D model. The analysis results are compared with test results of a reinforced concrete pipe column and a structure consisting of reinforced concrete columns and a steel space truss subjected to static and dynamic loading. This structure is a reduced scale model of a direct air-cooled condenser support platform built in a thermal power plant. The reduction scale for the column as well as for the structure was 1:8. The same structures are also analyzed using 3D solid elements for the entire structure to demonstrate the validity of the Element-Coupling model. A comparison of the accuracy and the computational effort indicates that by the proposed Element-Coupling method the accuracy is almost the same but the computational effort is significantly reduced.

Structural evaluation of an existing steel natatorium by FEM and dynamic measurement

  • Liu, Wei;Gao, Wei-Cheng;Sun, Yi;Yu, Yan-Lei
    • Structural Engineering and Mechanics
    • /
    • 제31권5호
    • /
    • pp.507-526
    • /
    • 2009
  • Based on numerical and experimental methods, a systematic structural evaluation of a steel natatorium in service was carried out in detail in this paper. Planning of inspection tasks was proposed firstly according to some national codes in China in order to obtain the economic and reliable results. The field visual inspections and static computation were conducted in turn under in-service environmental conditions. Further a three-dimensional finite element model was developed according to its factual geometry properties obtained from the field inspection. An analytical modal analysis was performed to provide the analytical modal properties. The field vibration tests on the natatorium were conducted and then two different system identification methods were used to obtain the dynamic characteristics of the natatorium. A good correlation was achieved in results obtained from the two system identification methods and the finite element method (FEM). The numerical and experimental results demonstrated that the main structure of the natatorium in its present status is safe and it still satisfies the demand of the national codes in China. But the roof system such as purlines and skeletons must be removed and rebuilt completely. Moreover the system identification results showed that field vibration test is sufficient to identify the reliable dynamic properties of the natatorium. The constructive suggestion on structural evaluation of the natatorium is that periodic assessment work must be maintained to ensure the natatorium's safety in the future.

딥러닝을 이용한 트러스 구조물의 정적 및 동적 거동 예측 (Prediction of Static and Dynamic Behavior of Truss Structures Using Deep Learning)

  • 심은아;이승혜;이재홍
    • 한국공간구조학회논문집
    • /
    • 제18권4호
    • /
    • pp.69-80
    • /
    • 2018
  • In this study, an algorithm applying deep learning to the truss structures was proposed. Deep learning is a method of raising the accuracy of machine learning by creating a neural networks in a computer. Neural networks consist of input layers, hidden layers and output layers. Numerous studies have focused on the introduction of neural networks and performed under limited examples and conditions, but this study focused on two- and three-dimensional truss structures to prove the effectiveness of algorithms. and the training phase was divided into training model based on the dataset size and epochs. At these case, a specific data value was selected and the error rate was shown by comparing the actual data value with the predicted value, and the error rate decreases as the data set and the number of hidden layers increases. In consequence, it showed that it is possible to predict the result quickly and accurately without using a numerical analysis program when applying the deep learning technique to the field of structural analysis.

교량단면의 공기력계수 및 플러터계수에 관한 실험적 연구 (Experimental Investigation of Aerodynamic Force Coefficients and Flutter Derivatives of Bridge Girder Sections)

  • 조재영;이학은;김영민
    • 대한토목학회논문집
    • /
    • 제26권5A호
    • /
    • pp.887-899
    • /
    • 2006
  • 본 연구의 목적은 교량 거더 단면의 공기역학적 특성을 나타내는 기본 자료인 공기력계수와 플러터계수가 동적응답과 어떠한 상관관계를 가지는지를 규명하는데 있다. 이를 위해 세 단계의 단면모형실험이 수행되었다. 첫 번째 단계에서는 총 7개의 거더 단면 즉, 6개의 플레이트거더 단면과 1개의 박스거더 단면이 고려되었으며 거더 단면의 기하학적 형상, 영각, 바람의 방향 그리고 기류조건이 공기력계수인 항력계수, 양력계수 그리고 모멘트계수에 미치는 영향을 정적 단면모형실험을 통해 살펴보았다. 두 번째 단계에서는 동적실험을 통해 각 단면의 공기력계수와 동적응답의 상관성을 검증하였다. 마지막으로 2자유도하의 동적 단면모형실험을 통해 세 개의 거더 단면의 플러터계수를 산출하고 이를 동적실험결과와 비교하였다. 주어진 단면형상에 대한 비정상 공기력에 의해 변화되는 시스템의 감쇠와 강성을 가장 잘 반영하는 플러터계수는 초기변위-자유진동시스템을 이용하여 추출하였다. 이를 위해 등류조건에서 풍속별로 교량단면의 수직 및 비틀림 초기변위의 시간에 따른 진폭의 감쇠를 측정하였다. 본 연구에서 제시한 교량단면의 공기력계수와 플러터계수는 공탄석해석 및 버펫팅해석을 위한 기본 자료로 유용하게 쓰일 것으로 보인다.

Changes in lower extremity alignment in standing position using a foot plate

  • Lee, Hye-Mi;Yang, Ji-Eun;Lee, Ju-Yeon;Im, Hong-Jun;Jeong, Yu-Jin;Park, Dae-Sung
    • Physical Therapy Rehabilitation Science
    • /
    • 제5권3호
    • /
    • pp.132-137
    • /
    • 2016
  • Objective: Eversion of the foot is created with internal rotation of the shank, and inversion of the foot is created with external rotation of the shank. The purpose of the study was to investigate the effect of continuous changes in the angle of the subtalar joint on lower extremity alignments. Design: Cross-sectional study. Methods: Seventeen healthy young adult subjects recruited. The subjects were asked to stand up in a natural standing position on a footplate with eye open and equal weight on each foot for 10s in two different conditions: The right subtalar joint was everted continuously $0^{\circ}-20^{\circ}$ and in separate segments of $0^{\circ}$, $5^{\circ}$, $10^{\circ}$, $15^{\circ}$, $20^{\circ}$. The averages of three trials were used. The observation of the changes in the lower extremity was performed with the use of 3-dimensional motion analysis. For data analysis, the SPSS 18.0 software using paired t-test and repeated measures analysis of variance (ANOVA) was applied. Results: The angle was significantly increased at the horizontal rotation angle of the shank, thigh, and ankle without anterior rotation of the pelvis (p<0.05). The maximum horizontal rotation angle at the thigh on $20^{\circ}$ was $-4.52^{\circ}$ in static, and $-3.10^{\circ}$ in the dynamic conditions compared to $0^{\circ}$. Conclusions: Increased unilateral foot pronation, thigh, shank, ankle horizontal rotation variance was significantly effective. The observation of the changes in foot abduction with the use of a 3-dimensional motion analysis augmented in predicting the angle values of each segment of the lower extremity. In further studies, a comparison of the right and left subtalar joints need to be investigated.