• 제목/요약/키워드: Three-Dimensional Image

검색결과 1,514건 처리시간 0.027초

Statistical Analysis of 3D Volume of Red Blood Cells with Different Shapes via Digital Holographic Microscopy

  • Yi, Faliu;Lee, Chung-Ghiu;Moon, In-Kyu
    • Journal of the Optical Society of Korea
    • /
    • 제16권2호
    • /
    • pp.115-120
    • /
    • 2012
  • In this paper, we present a method to automatically quantify the three-dimensional (3D) volume of red blood cells (RBCs) using off-axis digital holographic microscopy. The RBCs digital holograms are recorded via a CCD camera using an off-axis interferometry setup. The RBCs' phase image is reconstructed from the recorded off-axis digital hologram by a computational reconstruction algorithm. The watershed segmentation algorithm is applied to the reconstructed phase image to remove background parts and obtain clear targets in the phase image with many single RBCs. After segmenting the reconstructed RBCs' phase image, all single RBCs are extracted, and the 3D volume of each single RBC is then measured with the surface area and the phase values of the corresponding RBC. In order to demonstrate the feasibility of the proposed method to automatically calculate the 3D volume of RBC, two typical shapes of RBCs, i.e., stomatocyte/discocyte, are tested via experiments. Statistical distributions of 3D volume for each class of RBC are generated by using our algorithm. Statistical hypothesis testing is conducted to investigate the difference between the statistical distributions for the two typical shapes of RBCs. Our experimental results illustrate that our study opens the possibility of automated quantitative analysis of 3D volume in various types of RBCs.

DEM을 이용한 실영상기반 가상표적의 폐색처리기법 (Resolving Occlusion Technique of Virtual Target on Real Image using DEM)

  • 차정희;장효종;김계영
    • 정보처리학회논문지B
    • /
    • 제13B권7호
    • /
    • pp.663-670
    • /
    • 2006
  • 실 세계 영상에 가상표적을 효과적으로 전시하여 현실감을 높이려면 먼저 두 세계를 정합한 후 폐색영역을 산출하여 가상객체의 위치를 결정하는 것이 필수적이다. 본 논문에서는 실 영상위에 지정된 경로에 따라 가상표적을 이동시킬 때 발생하는 폐색문제를 해결하는 새로운 방법을 제안한다. 이를 위해 먼저 실험 영역의 DEM을 이용하여 3차원 가상세계를 생성하고 이를 CCD 카메라 영상과 시각적 단서를 이용하여 정합한다. 또한 스네이크 알고리즘과 픽킹 알고리즘을 이용하여 영상에서 폐색 처리될 지점의 3차원 정보를 산출하고 표적이동시 이를 이용하여 폐색문제를 해결하는 방법을 제안하였다 실험에서는 부분적 폐색이 발생하는 환경에서 제안한 방법의 유효성을 입증하였다.

자기공명영상장치(磁氣共鳴映像裝置)에서 움직임허상(虛像)의 위치제어(位置制御)에 관(關)한 연구(硏究) (A Study on Locational Control of Motion Ghost in Magnetic Imaging System)

  • 이후민
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제16권2호
    • /
    • pp.19-26
    • /
    • 1993
  • Magnetic Resonance Image represents three-dimensional diagnostic imaging technique using both nuclear magnetic resonance phenomenon and computer. Compared with computed tomography (CT), MRI have advantages harmless to patient's body, three-dimensional image with high resolution and disadvantages long data acquisition time because of long T1 relaxation time, relatively low signal to noise ratio, high cost of setting, also. As physiologic motion of tissue results in motion ghost in MRI, high 2.0Tesla make improve low signal to noise ratio. This study have aim to improve image quality with controling motion ghost of tissue. Supposing a moving pixel in constant frequency, one pixel make two ghosts which are same size and different anti-phase. So, this study will show adjust parameter on locational control of motion ghost. Author made moving phantom replaced by respiratory movement of human, researched change of motion frequency, FOV by location shift, and them decided optimal FOV (field of view). The results are as follows: 1. The frequency content of the motion determines how far the image always appear in phase-encoding direction, the morphology of the ghost image is characteristic of the direction of the motion and its amplitude. 2. Double FOV of fixed signal object for locational control of motion ghost is recommended. Decreasement of spatial resolution by increasing FOV can compensate on increasing of matrix in spite of scan time increasement.

  • PDF

Computational Integral Imaging Reconstruction of a Partially Occluded Three-Dimensional Object Using an Image Inpainting Technique

  • Lee, Byung-Gook;Ko, Bumseok;Lee, Sukho;Shin, Donghak
    • Journal of the Optical Society of Korea
    • /
    • 제19권3호
    • /
    • pp.248-254
    • /
    • 2015
  • In this paper we propose an improved version of the computational integral imaging reconstruction (CIIR) for visualizing a partially occluded object by utilizing an image inpainting technique. In the proposed method the elemental images for a partially occluded three-dimensional (3D) object are recorded through the integral imaging pickup process. Next, the depth of occlusion within the elemental images is estimated using two different CIIR methods, and the weight mask pattern for occlusion is generated. After that, we apply our image inpainting technique to the recorded elemental images to fill in the occluding area with reliable data, using information from neighboring pixels. Finally, the inpainted elemental images for the occluded region are reconstructed using the CIIR process. To verify the validity of the proposed system, we carry out preliminary experiments in which faces are the objects. The experimental results reveal that the proposed system can dramatically improve the quality of a reconstructed CIIR image.

A Survey for 3D Object Detection Algorithms from Images

  • Lee, Han-Lim;Kim, Ye-ji;Kim, Byung-Gyu
    • Journal of Multimedia Information System
    • /
    • 제9권3호
    • /
    • pp.183-190
    • /
    • 2022
  • Image-based 3D object detection is one of the important and difficult problems in autonomous driving and robotics, and aims to find and represent the location, dimension and orientation of the object of interest. It generates three dimensional (3D) bounding boxes with only 2D images obtained from cameras, so there is no need for devices that provide accurate depth information such as LiDAR or Radar. Image-based methods can be divided into three main categories: monocular, stereo, and multi-view 3D object detection. In this paper, we investigate the recent state-of-the-art models of the above three categories. In the multi-view 3D object detection, which appeared together with the release of the new benchmark datasets, NuScenes and Waymo, we discuss the differences from the existing monocular and stereo methods. Also, we analyze their performance and discuss the advantages and disadvantages of them. Finally, we conclude the remaining challenges and a future direction in this field.

큐브 형태의 공간 변화를 표현한 스카프 디자인 (The scarf design expressing the cube form space change)

  • 박상은
    • 한국의상디자인학회지
    • /
    • 제22권4호
    • /
    • pp.93-104
    • /
    • 2020
  • This paper focuses on the spatial changes that create a three-dimensional or deep feeling on the surface of a scarf centering on the cube shape. Through this, consumers with various tastes were able to satisfy their image presentation. The cube form has simplicity and order and is likely to be used as a formative object. The cube shapes can be expressed in various forms through visual and perceptual spatial changes by presenting various shape changes based on the viewpoint of the two-dimensional silk surface, that is, by changing the eyes' position and orientation. Various visual theorists' discussions about cube-shaped visual changes were discussed. In addition, the three-dimensional spatial illusion caused by the shape and color of Victor Bazaarelli's cube was examined. The cube shape was printed silk surfaces to give a three-dimensional sense of space on a two-dimensional scarf design using the size change, the difference in the length of the line, and the color change. As such, the cube shape has infinite possibilities as a method that can express three-dimensional depth and space on the flat surface of a scarf. Therefore, it is hoped that this study will be applied to various aspects as the basic data for the scarf design that expresses the spatial changes in the form of cubes.

픽셀단위 상대적 신뢰도와 일치상관계수를 이용한 영상의 깊이 추정 알고리즘 (An Image Depth Estimation Algorithm based on Pixel-wise Confidence and Concordance Correlation Coefficient)

  • 김연우;이칠우
    • 한국멀티미디어학회논문지
    • /
    • 제21권2호
    • /
    • pp.138-146
    • /
    • 2018
  • In this paper, we describe an algorithm for extracting depth information from a single image based on CNN. When acquiring three-dimensional information from a single two-dimensional image using a deep-learning technique, it is difficult to accurately predict the edge portion of the depth image because it is a part where the depth changes abruptly. in this paper, we introduce the concept of pixel-wise confidence to take advantage of these characteristics. We propose an algorithm that estimates depth information from a highly reliable flat part and propagates it to the edge part to improve the accuracy of depth estimation.

The Advanced Digital Special Images and Technology

  • Nakajima, Masayuki
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 1996년도 Proceedings International Workshop on New Video Media Technology
    • /
    • pp.50-55
    • /
    • 1996
  • Multimedia boom has happened worldwide these days. In multimedia, we use several kinds of media such as character, figure, voice, music, still images, moving picture etc.. Then I think image including moving picture is the most effective and important media for human being. Creating digital images using a computer has the following two main approaches, depending on how the computer is used. 1. CG Technology. Created images, produced through computer graphics. 2. Digital Image Processing. Images processed through digital image processing technologies. Approach (1) is very popular as Computer Graphics. Two-dimensional and three-dimensional computer graphics techniques are used over wide applications today. On the other hand, Approach (2), which uses digital image processing technology, has been attracting attention lately, in the filed of movies and television. In this report, I will introduce these approaches of CG and digital image processing, and show some application fields such as current movies.

  • PDF

Performance Evaluation of a Rapid Three Dimensional Diffusion MRI

  • Numano, Tomokazu;Homma, Kazuhiro;Nishimura, Katsuyuki
    • 한국의학물리학회:학술대회논문집
    • /
    • 한국의학물리학회 2002년도 Proceedings
    • /
    • pp.356-358
    • /
    • 2002
  • MRI, particularly diffusion weighted imaging (DWI), plays vital roles in detection of the acute brain infarction$\^$1-4/ and others metabolic changes of biological tissues. In general, every molecule in biological tissues may diffuse and move randomly in three-dimensional space. However, in clinical diagnosis, only 2D-DWI is used. The authors have developed a new method for rapid three-dimensional DWI (3D-DWI). In this method, by refocusing of the magnetized spin with the applied gradient field, direction of which is opposite to phase encoding field. Magnetized spin of $^1$H is kept under the SSFP (steady state free precession)$\^$5-6/. Under SSFP, in addition of FID, spin echo and stimulated echo are also generated, so the acquired signal is increased. The signal intensity is increased depending on flip angle (FA) of magnetized spin. This phenomenon is confirmed by human brain and phantom studies. The performance of this method is quantitatively analyzed by using both of conventional spin echo DWI and 3D-DWI. From experimental results, three dimensional diffusion weighted images are obtained correctly for liquid phantoms (water, acetone and oil), diffusion coefficient is enhanced in each image. Therefore, this method will provide useful information for clinical diagnosis.

  • PDF

수치 영상을 활용한 3차원 위치 정확도 해석 (A Study On the Accuracy Analysis of 3-Dimensional Position using Digital Image)

  • 유복모;손덕재;염재홍;백상호
    • 대한공간정보학회지
    • /
    • 제3권2호
    • /
    • pp.159-172
    • /
    • 1995
  • 본 연구에서는 근거리 사진측량에 수치사진측량기법을 적용하여 3차원 위치를 결정하였다. 이를 위해 근거리 사진측량으로부터 취득한 사진을 스캐너에 의해 수치영상으로 변환시키고, 영역적 영상정합기법으로 정합점을 탐색하여 사진의 외부표정요소를 결정한 후 기준점들의 3차원 위치값을 계산하였다. 이 값을 최초의 기준점 측량값과 비교하여 정확도를 분석함으로서 수치사진측량기법에서 적용할 수 있는 영상정합기법에 대해 연구하였다. 영상정합은 영역적 영상정합방법에 의한 정합점 추출방법을 채택하였으며, 영상소 단위까지의 영상정합기법과 부영상소 단위까지의 영상정합 실험을 실시하여 그 결과를 비교 분석하였다. 본 연구의 결과 영상소단위의 정합에서는 3.32mm의 3차원 위치오차를 얻을 수 있었으며, 단일 축 방향으로 0.76mm의 오차로 위치를 결정할 수 있었다. 부영상소 단위의 정합에서는 각각 3.98mm와 0.73mm의 오차로 위치를 결정할 수 있었다.

  • PDF