• Title/Summary/Keyword: Three point bending test

Search Result 306, Processing Time 0.029 seconds

TiC-Nb 소결 복합재료의 연성-취성 천이 특성 (Ductile-Brittle Transition Property of Sintered TiC-Nb Composites)

  • 신순기
    • 한국재료학회지
    • /
    • 제24권1호
    • /
    • pp.13-18
    • /
    • 2014
  • In order to clarify the effect of Nb addition on the ductile-brittle transition property of sintered TiC, TiC-10 mol% Nb composites were researched using a three-point bending test at temperatures from room temperature to 2020 K, and the fracture surface was observed by scanning electron microscopy. It was found that the Nb addition decreases the ductile-brittle transition temperature of sintered TiC by 300 K and increases the ductility. The room temperature bending strength was maintained at up to 1800 K, but drastically dropped at higher temperatures in pure TiC. The strength increased moderately to a value of 320MPa at 1600 K in TiC-10 mol% Nb composites, which is 40% of the room temperature strength. Pores were observed in both the grains and the grain boundaries. It can be seen that, as Nb was added, the size of the grain decreased. The ductile-brittle transition temperature in TiC-10 mol% Nb composites was determined to be 1550 K. Above 1970 K, yieldpoint behavior was observed. When the grain boundary and cleavage strengths exceed the yield strength, plastic deformation is observed at about the same stress level in bending as in compression. The effect of Nb addition is discussed from the viewpoint of ability for plastic deformation.

Optimization and investigations of low-velocity bending impact of thin-walled beams

  • Hossein Taghipoor;Mahdi Sefidi
    • Steel and Composite Structures
    • /
    • 제50권2호
    • /
    • pp.159-181
    • /
    • 2024
  • In the present study, the effect of geometrical parameters of two different types of aluminum thin-walled structures on energy absorption under three-bending impact loading has been investigated experimentally and numerically. To evaluate the effect of parameters on the specific energy absorption (SEA), initial peak crushing force (IPCF), and the maximum crushing distance (δ), a design of experiment technique (DOE) with response surface method (RSM) was applied. Four different thin-walled structures have been tested under the low-velocity impact, and then they have simulated by ABAQUS software. An acceptable consistency between the numerical and experimental results was obtained. In this study, statistical analysis has been performed on various parameters of three different types of tubes. In the first and the second statistical analysis, the dimensional parameters of the cross-section, the number of holes, and the dimensional parameter of holes were considered as the design variables. The diameter reduction rate and the number of sections with different diameters are related to the third statistical analysis. All design points of the statistical method have been simulated by the finite element package, ABAQUS/Explicit. The final result shows that the height and thickness of tubes were more effective than other geometrical parameters, and despite the fact that the deformations of the cylindrical tubes were around forty percent greater than the rectangular tubes, the top desirability was relevant to the cylindrical tubes with reduced cross-sections.

Observation of reinforcing fibers in concrete upon bending failure by X-ray computed tomographic imaging

  • Seok Yong Lim;Kwang Soo Youm;Kwang Yeom Kim;Yong-Hoon Byun;Young K. Ju;Tae Sup Yun
    • Computers and Concrete
    • /
    • 제31권5호
    • /
    • pp.433-442
    • /
    • 2023
  • This study presents the visually observed behavior of fibers embedded in concrete samples that were subjected to a flexural bending test. Three types of fibers such as macro polypropylene, macro polyethylene, and the hybrid of steel and polyvinyl alcohol were mixed with cement by a designated mix ratio to prepare a total of nine specimens of each. The bending test was conducted by following ASTM C1609 with a net deflection of 2, 4, and 7 mm. The X-ray computed tomography (XCT) was carried out for 7 mm-deflection specimens. The original XCT images were post-processed to denoise the beam-hardening effect. Then, fiber, crack, and void were semi-manually segmented. The hybrid specimen showed the highest toughness compared to the other two types. Debonding based on 2D XCT sliced images was commonly observed for all three groups. The cement matrix near the crack surface often involved partially localized breakage in conjunction with debonding. The pullout was predominant for steel fibers that were partially slipped toward the crack. Crack bridging and rupture were not found presumably due to the image resolution and the level of energy dissipation for poly-fibers, while the XCT imaging was advantageous in evaluating the distribution and behavior of various fibers upon bending for fiber-reinforced concrete beam elements.

Effect of nonlocal-nonsingular Fractional Moore-Gibson-Thompson theory in semiconductor cylinder

  • Iqbal Kaur;Kulvinder Singh
    • Advances in nano research
    • /
    • 제15권4호
    • /
    • pp.305-313
    • /
    • 2023
  • This study is aimed to investigate the electrically conductive properties of epoxy nanocomposites exposed to an acidic environment under various mechanical loads. For simultaneous assessment of the acidic environment and mechanical load on the electrical conductivity of the samples, the samples with and without carbon nanotubes were exposed to the acidic environment under three different loading conditions for 20 days. Then, the aged samples' strength and flexural stiffness degradation under crude oil and bending stress were measured using a three-point flexural test. The aged samples in the acidic environment and under 80 percent of their intact ultimate strength revealed a 9% and 26% reduction of their electrical conductivity for samples with and without CNTs, respectively. The presence of nanoparticles declined flexural stiffness by about 16.39%. Scanning electron microscopy (SEM) images of the specimen were used to evaluate the dispersion quality of CNTs. The results of this study can be exploited in constructing conductive composite electrodes to be used in petroleum environments such as crude oil electrostatic tanks.

Effect of the crude oil environment on the electrical conductivity of the epoxy nanocomposites

  • Seyed Morteza Razavi;Soroush Azhdari;Fathollah Taheri-Behrooz
    • Advances in nano research
    • /
    • 제15권4호
    • /
    • pp.285-294
    • /
    • 2023
  • This study is aimed to investigate the electrically conductive properties of epoxy nanocomposites exposed to an acidic environment under various mechanical loads. For simultaneous assessment of the acidic environment and mechanical load on the electrical conductivity of the samples, the samples with and without carbon nanotubes were exposed to the acidic environment under three different loading conditions for 20 days. Then, the aged samples' strength and flexural stiffness degradation under crude oil and bending stress were measured using a three-point flexural test. The aged samples in the acidic environment and under 80 percent of their intact ultimate strength revealed a 9% and 26% reduction of their electrical conductivity for samples with and without CNTs, respectively. The presence of nanoparticles declined flexural stiffness by about 16.39%. Scanning electron microscopy (SEM) images of the specimen were used to evaluate the dispersion quality of CNTs. The results of this study can be exploited in constructing conductive composite electrodes to be used in petroleum environments such as crude oil electrostatic tanks.

카본/나일론 복합재료의 냉각속도에 따른 기계적 특성변화 (Effect of Cooling Rate on Mechanical Properties of Carbon/Nylon66 Composites)

  • 홍순곤;변준형;황병선;강범수
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2001년도 춘계학술발표대회 논문집
    • /
    • pp.122-125
    • /
    • 2001
  • The objective of this research is to develop hybridized yarns for thermoplastic composites, and to examine tile effect of cooling rate on mechanical properties of the composites. The co-braided yarn utilizing carbon fibers as reinforcements and Nylon 66 fibers as matrix materials has been fabricated. Thermoplastic composites have been manufactured by the hot-press forming process. For the processing conditions, cooling rates of $-2.5^{\circ}C$/min and $-60^{\circ}C$/min have been considered. Three-point bending test and losipescu shear test were performed to investigate the effect of the cooling rate and the surface treatment of carbon fibers. SEM photographs were used to investigate the fracture surfaces of the tested samples. The cooling rate of $-60^{\circ}C$/min resulted in the higher strength and elastic modulus for bending and shear tests. The composites of the epoxy-sized carbon fibers showed the lowest strength due to the degradation of the sizing material during the thermoforming process.

  • PDF

화학적 프리스트레스가 도입된 모르타르의 파괴특성에 관한 연구 (A Study on Fracture Characteristics of Chemically Prestressed Mortar)

  • 안중길;심별;송하원;변근주
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.828-833
    • /
    • 2003
  • In this paper, a study on fracture characteristics of chemically prestressed mortar with addition of expansive additives was carried out. Uni-axial tension tests with reinforced mortar specimen restrained by embedded reinforcing bar and three point bending tests with notched steel fiber reinforced beams were carried out to verify the characteristics of the cracking behavior, the tension stiffening effect due to bond between rebar and mortar, and fracture characteristic. Tension stiffening curve for the chemically prestressed mortar was obtained from uni-axial tension test. And increased fracture energy due to the chemical prestress was also obtained from bending test and tension softening curve for chemically prestressed mortar was also obtained.

  • PDF

섬유기기용 $Al_2O_3$계 세라믹스의 강도 특성 (Strength Properties of $Al_2O_3$ Ceramics with Textile Machinery)

  • 안병건;안석환;박인덕;남기우
    • 동력기계공학회지
    • /
    • 제8권4호
    • /
    • pp.44-48
    • /
    • 2004
  • For many years researchers have been attempting to establish the relations among the preparation history, structure and properties of ceramics. In this study, the strength property of $Al_2O_3$ ceramics with components and giudes of the textile machinery was investigated. The optimized conditions of ressureless sintering were investigated in order to obtain the maximum strength of $Al_2O_3$ ceramics for using at the textile machinery. As the sintering conditions, $1,400{\sim}1,700^{\circ}C$ of temperatures and $30{\sim}150$ minutes of times were applied. Three-point bending test was conducted on the sintered materials to obtain the strength property. From test results, the optimum sintering temperature has $1,600^{\circ}C$. And the optimum sintering time in $1,600^{\circ}C$ has about 100 minutes.

  • PDF

Structural performance of recycled aggregates concrete sourced from low strength concrete

  • Goksu, Caglar;Saribas, Ilyas;Binbir, Ergun;Akkaya, Yilmaz;Ilki, Alper
    • Structural Engineering and Mechanics
    • /
    • 제69권1호
    • /
    • pp.77-93
    • /
    • 2019
  • Although much research has been carried out using recycled aggregates sourced from normal strength concrete, most of the buildings to be demolished are constructed with low strength concrete. Therefore, the properties of the concrete incorporating recycled aggregates, sourced from the waste of structural elements cast with low strength concrete, were investigated in this study. Four different concrete mixtures were designed incorporating natural and recycled aggregates with and without fly ash. The results of the mechanical and durability tests of the concrete mixtures are presented. Additionally, full-scale one-way reinforced concrete slabs were cast, using these concrete mixtures, and subjected to bending test. The feasibility of using conventional reinforced concrete theory for the slabs made with structural concrete incorporating recycled aggregates was investigated.

전기도금을 이용한 스테인레스 스틸 각형 선재의 굵기 증가 후 물성 변화 (Change of physical properties after diameter increase by electroplating of orthodontic rectangular stainless steel wire)

  • 이정석;이기헌;황현식
    • 대한치과교정학회지
    • /
    • 제33권2호
    • /
    • pp.131-140
    • /
    • 2003
  • 본 연구는 전기도금을 이용하여 각형 선재의 굵기를 증가시킨 후 기존의 선재와 물성을 비교함으로써 이의 임상적 적용 가능성을 알아보고자 시행되었다. 한 변의 길이가 0.016 인치인 정사각형 스테인레스 스틸 교정용 선재에 니켈 전기도금을 시행하여 굵기를 0.001 인치 증가시켜 한 변의 길이가 0.017인치인 정사각형 선재로 만들었고 도금층의 밀착성을 증진시키기 위해 $400^{\circ}C$의 전기로에서 10분간 열처리를 시행하였다 시편의 물성변화를 알아보기 위하여 전기도금을 이용하여 제작된 15개의 시편을 실험군(016P군)으로, 기존의 0.016 인치 (016군), 0.017 인치 (017군) 스테인레스 스틸 교정용 선재를 대조군으로 설정한 후 3점 굴곡 시험과 비틀림 시험을 시행하여 다음과 같은 결과를 얻었다. 1. 3점 굴곡 시험 결과 0l6P군이 016군에 비해 강성과 항복강도, 극한강도 모두 증가하는 경향을 보였으며, 강성과 극한강도는 통계적으로 유의한 차이가 있었다(p<0.05). 2. 3점 굴곡 시험 결과 0l6P군이 017군보다 강성과 항복강도, 극한강도 모두 낮은 경 향을 보였으며, 강성은 통계적으로 유의한 차이가 있었다(p<0.05). 3. 비틀림 시험 결과 016P군이 016군에 비해 비틀림 강성과 항복 비틀림 모멘트, 최대 비틀림 모멘트 모두 높았으며, 통계적으로 유의한 차이가 있었다(p<0.05). 4. 비틀림 시험 결과 016P군이 017군에 비해 비틀림 강성과 항복 비틀림 모멘트, 최대 비틀림 모멘트 모두 낮은 경향을 보였으며, 이 중 항복 비틀림 모멘트와 최대 비틀림 모멘트에서 통계적으로 유의한 차이가 있었다(p<0.05). 이상의 결과를 요약해 보면 각형 선재에 도금을 시행하여 굵기를 증가시키고 물성이 증가될 수 있음을 알았다. 비록 도금을 시행한 016P군이 기존의 017군보다 강성이 낮았으나 이는 반대로 016P군이 017군보다 탄성이 높음을 나타내며 토크조절이 부족한 경우 브라켓 슬롯에 쉽게 삽입되어 교정력을 발휘할 것으로 기대된다.