• 제목/요약/키워드: Three point bending test

검색결과 307건 처리시간 0.025초

알루미나 탄화규소 복합세라믹스 균열치유재의 강도와 탄성파 특성 (Strength of Crack Healed-Specimen and Elastic Wave Characteristics of Al2O3/SiC Composite Ceramics)

  • 김해숙;김미경;김진욱;안석환;남기우
    • 대한기계학회논문집A
    • /
    • 제31권4호
    • /
    • pp.425-431
    • /
    • 2007
  • [ $Al_2O_3/SiC$ ]composite ceramics were sintered to evaluate the bending strength and elastic wave characteristics. The three-point bending test was carried out under room temperature. The elastic wave was detected by fracture wave detector. The crack healing behavior was investigated from 1373 K to 1723 K. The bending strength of $Al_2O_3/SiC$ composite by nanocomposite is higher than that of $Al_2O_3$ monolithic. Crack-healing behavior depended on an amount of additive powder $Y_2O_3$. In $Al_2O_3/SiC$ composite ceramics with 3 wt. % $Y_2O_3$ for additive powder, the bending strength at 1573 K is about 100% increase than that of the smooth specimens. From the result of wavelet analysis of elastic wave signal, the smooth specimen and heat treated specimen of $Al_2O_3$ monolithic and $Al_2O_3/SiC$ composite ceramics showed characteristics of frequency about 58 kHz. The strength of $Al_2O_3/SiC$ composite ceramics was a little higher than those of $Al_2O_3$ monolithic. The dominant frequencies were high with increasing of $Y_2O_3$ for additive powder. The dominant frequencies had direct connection with the bending strength.

Cocure/Precure 경화공정에 의해 제조된 Carbon/Epoxy 복합재료의 미시적 파손거동에 대한 AE 특성 (AE Characteristics on Microscopic Failure Behavior of Carbon/Epoxy Comosite Prepared by Cocure and Precure Process)

  • 이진경;이준현;이민래;최흥섭
    • 대한기계학회논문집A
    • /
    • 제24권10호
    • /
    • pp.2520-2528
    • /
    • 2000
  • Mechanical and physical properties of composite materials make a great difference due to their cure process condition. In order to clarify the effect of cure process condition on the microscopic damage behavior and failure mechanism of Carbon/Epoxy composites, three point bend test has been performed. For this purpose, two kinds of specimens with single adhesive and multiple adhesive layers were prepared. For single adhesive layer, four different types of specimen were used, that is, non-sanding, sanding, cocured, laminated specimens. Three different types of specimen were also used for the multiple adhesive layer, non-sanding, sanding, cocured specimens. Acoustic emission technique has also been employed to monitor the damage progresses associated with each micro-failure mechanism. The characteristics of AE parameters associated with micro-failure mechanism of each specimen were discussed.

콘크리트 디스크를 이용한 혼합모드 파괴 (The Mixed Mode Fracture Using Concrete Disk)

  • 진치섭;김희성;정진호
    • 콘크리트학회논문집
    • /
    • 제12권2호
    • /
    • pp.63-69
    • /
    • 2000
  • This study investigates a new method of using a concrete disk to calculate stress intensity factor (SIF) for mixed mode cases. The results indicate that the disk method is more accurate than three point bending test (TPB) in obtaining correct SIF values for mixed mode fracture propagation. Stress intensity factors $K_{I}$ and $K_{II}$ are calculated using a center notched disk subjected to splitting load. The notch angle is calculated by finite element (FEM). Fracture toughness $K_\textsc{k}$ of the concrete is obtained from the load intensities at the initiation of crack propagation. According to the finite element analysis(FEA) and disk test, the results show that mode I and mixed mode cracks propagate toward the directions of crack face and loading point, respectively. The results from FEA with maximum stress theory compare well with the experimental date. Unlike TPB method where an accurate fracture toughness value is difficult to obtain due to the irregular shape of load deflection curve and delayed final crack propagation (following slow stable cracking). fracture toughness value is easily measured in the disk test from the crack initial load. Therefore, it is safe to conclude that disk method is more advantageous than TPB method in analyzing combined mode fracture problems.

Fracture Toughness and Crack Growth Resistance of the Fine Grain Isotropic Graphite

  • Kim, Dae-Jong;Oh, Seung-Jin;Jang, Chang-Heui;Kim, In-Sup;Chi, Se-Hwan
    • Carbon letters
    • /
    • 제7권1호
    • /
    • pp.19-26
    • /
    • 2006
  • Three point bending tests of single edge notched beam (SENB) specimens were carried out to evaluate the fracture behavior of the fine-grain isotropic nuclear grade graphite, IG-11. To measure the crack initiation point and the subsequent crack growth, the direct current potential drop (DCPD) method and a traveling microscope were used. The effects of test variables like initial crack length, specimen thickness, notch type and loading rate on the measured fracture toughness, $K_Q$, were investigated. Based on the test results, the ranges of the test variables to measure the reliable fracture toughness value were proposed. During the crack growth, the rising R-curve behavior was observed in IG-11 graphite when the superficial crack length measured on the specimen surface was used. The increase of crack growth resistance was discussed in terms of crack bridging, crack meandering, crack branching, microcracking and crack deflection, which increase the surface energy and friction force.

  • PDF

열간단조 금형 육성용접부 내균열성 및 내열충격성 평가방법에 관한 연구 (A Study on Assessment Method of Crack Resistance and Thermal Shock Resistance in Hardfacing for Hot Forging Die)

  • 조상명;김성호;정연호;백승희;장종훈;박철규;우희철;정병호
    • Journal of Welding and Joining
    • /
    • 제28권3호
    • /
    • pp.79-85
    • /
    • 2010
  • Hardfacing is one of the frequently applying method to increase surface hardness in hot forging die. Recently, hardfacing receives great attention due to it's repair availability and low cost. In hot forging die, crack resistance and thermal shock resistance have been considered as major properties, However there are few studies for the assessment of these properties. So, it is necessary to establish the assessment method for crack resistance and thermal shock resistance in hardfacing for hot forging die. In this study, flux cored arc welding was applied to make hardfacing welds. Three point bending test was carried out to assess hardfacing weld's crack resistance, and high temperature bending test using salt bath was developed for thermal shock resistance. Consequently, it was possible to assess crack resistance and thermal shock resistance of hardfacing welds for hot forging die quantitatively.

Mechanical properties related to the microstructure of seven different fiber reinforced composite posts

  • de la Pena, V?ctor Alonso;Darriba, Iria L;Valea, Martin Caserio;Rivera, Francisco Guitian
    • The Journal of Advanced Prosthodontics
    • /
    • 제8권6호
    • /
    • pp.433-438
    • /
    • 2016
  • PURPOSE. The aim of this in vitro study was to evaluate the mechanical properties (bending strength and hardness) of seven different fiber reinforced composite posts, in relation to their microstructural characteristics. MATERIALS AND METHODS. Two hundred eighty posts were divided into seven groups of 40, one group for each type of post analyzed. Within each group, 15 posts were subjected to three-point bending strength test, 15 to a microhardess meter for the Knoop hardness, and 10 to Scanning Electron Microscope in order to determine the diameter of the fibers and the percentage of fibers embedded in the matrix. To compare the flexural strength in relation to the type of fiber, matrix, and the hardness of the posts, a Kruskal-Wallis H test was used. The Jonckheere-Terpstra test was used to determine if the volume percent of fibers in the post influenced the bending strength. RESULTS. The flexural strength and the hardness depended on the type of fibers that formed the post. The lower flexural strength of a post could be due to deficient bonding between the fiber and the resin matrix. CONCLUSION. According to the results, other factors, besides the microstructural characteristics, may also influence the mechanical properties of the post. The feature that has more influence on the mechanical properties of the posts is the type of fiber.

석탄회 재활용 건설신소재 개발을 위한 파괴특성에 관한 실험적 연구 (Experimental Study for Fracture Characteristic of New Building Materials with Recycled Ash)

  • 조병완;박종빈;구자갑
    • 콘크리트학회논문집
    • /
    • 제17권2호
    • /
    • pp.255-261
    • /
    • 2005
  • 본 연구에서는 매년 많은 양의 석탄회 발생으로 인한 환경오염을 줄이고 천연자원의 채취와 고갈로 인한 문제를 극복하기 위해, 산업 폐기물의 건설재료로서의 재활용 가능성을 확보하기 위한 기초적인 연구자료를 제시하였다. 압축강도실험을 통하여 재료에 대한 탄성계수값을 측정하였으며, 3점 휨파괴시험으로부터는 파괴에너지, 초기노치비, 노치민감도등을 평가함으로써 파괴역학적 파라메타를 제안하였다. 실험 결과, 초기강도는 콘크리트에 비해 낮으나 장기강도에서는 비슷함을 볼 수 있었다 하지만 파괴강도가 증가함에 따라 취성적인 경향을 보이면서 파괴에너지값은 낮음을 알 수 있었다. 또한 하중-변위곡선과 하중-균열개구변위곡선의 형태는 모두 비슷한 형태를 띠고 있었으며, 재령이 증가할수록, 노치비는 작을수록 최대하중값이 커지면서 파괴시의 처짐은 감소함을 알 수 있다. 하지만 파괴강도가 커지면서 취성적인 경향으로 최대하중이후의 연화구간의 기울기가 급해짐을 볼 수 있었다. 따라서 연성의 확보에 대한 추가적인 보완연구가 진행되어진다면 충분히 건설재료로 사용 가능할 것으로 판단되어진다.

굽힘시험시의 Mg/Al/STS 3층 클래드재의 변형 및 파단특성 분석 (Failure and Deformation Analyses of 3-ply Mg/Al/STS Clad-Metalin Bending)

  • 김인규;송준영;오기환;홍순익
    • 대한금속재료학회지
    • /
    • 제50권5호
    • /
    • pp.345-351
    • /
    • 2012
  • A three-point bending test was performed on roll-bonded Mg/Al/STS clad-metal plates under two different testing conditions (Mg layer in tension, or STS in tension) and their mechanical response and fracture behavior were investigated. Bending strength was found to be greater under the condition of Mg layer in tension. Heat treatment at $200^{\circ}C$ increased the bending formability, suggesting the interfacial strength increased at $200^{\circ}C$. Under the condition of Mg in tension, the clad heat-treated at $300^{\circ}C$ and $400^{\circ}C$ fractured in two steps, with the first step associated with the interfacial fracture between Mg and Al, and the second the fracture of the Mg layer. STS/Al layers were found to be bent without complete fracture. Under the condition of STS in tension, the clad heat-treated at $300^{\circ}C$ and $400^{\circ}C$ exhibited a very small load drop at the displacement, which is similar to that of the first load drop associated with the interfacial fracture under the condition of Mg in tension. In this case, no interfacial cracks were found and the complete cut-through fracture of clad was observed at low temperature heat treatment conditions, suggesting excellent interfacial strength. When the heat treatment temperature was higher than $300^{\circ}C$, interfacial cracks were observed. The local stress condition and the position of the interface with respect to the surface were found to have a great influence on the fracture behaviors of clad metals.

강섬유보강 콘크리트의 휨거동에 관한 연구 (A Study on the Flexural Behavior of Steel Fiber Reinforced Concrete Structures)

  • 장동일;채원규;이명구
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1990년도 가을 학술발표회 논문집
    • /
    • pp.169-174
    • /
    • 1990
  • Fracture tests were carried out in order to investigate the flexural behavior of SFRC (Steel Fiber Reinforced Concrete) structures. Sixty three SFRC beams were used in the tests, the fracture mode, the relationships between loading and strains, and the relationships between loading and mid-span deflections of the beams were observed under the three point bending loading. From the test results, the effects of steel fiber contents and a/h ratio on the concrete flexural behavior were studied, and the stress intensity factors and the flexural strength of SFRC beams were calculated. According to the results of regression analysis, predicting formulas for the flexural strength of SFRC beams are also suggested.

  • PDF

Behaviour of self compacting repair mortars based on natural pozzolana in hot climate

  • Benyahia, A.;Ghrici, M.
    • Advances in concrete construction
    • /
    • 제6권3호
    • /
    • pp.285-296
    • /
    • 2018
  • In the present paper, the results of an experimental study of the bond between repair materials and mortar substrate subjected to hot climate is presented. Half-prisms of size $40{\times}40{\times}80mm$, serving as a substrate mortar samples (SUBM) were manufactured in the laboratory and then stored at an ambient temperature for 6 months. Five self compacting mortar mixes (SCMs) incorporating 0%, 10%, 20%, 30%, and 40% of natural pozzolana as white cement replacement were used as repair materials. Repaired composite samples (SCMs/SUBM) were cured at hot climate for different lengths of time (28 and 56-days). During the first week of curing, the composite samples were watered twice a day. The test carried out to assess the bond between SCMs and SUBM was based on three-point bending (3 PB) test. The obtained results have proved that it was feasible to produce compatible repair materals in this curing environment by using up to 30% natural pozzolana as white cement replacement.