• 제목/요약/키워드: Three phase squirrel-cage induction motor

Search Result 41, Processing Time 0.025 seconds

Calculation of Equivalent d-q Model Parameters of A Squirrel Cage Induction Motor Using Finite Element Method (유한요소법에 의한 농형유도전동기 d-q 등가모델의 회로정수 산출)

  • Choi, Chong-Sun;Koo, Tae-Man
    • Proceedings of the KIEE Conference
    • /
    • 1999.07a
    • /
    • pp.315-317
    • /
    • 1999
  • This paper presents a method for determining of the equivalent d-q model parameters of three-phase squirrel cage induction motors. The method is based on the use of a finite-element field calculation which enables the precise slot geometry to be modelled accurately, and includes the effects of magnetic saturation of iron core. The proposed method can reduce computational costs compared with the method that needs the iterative field analysis to obtain the impedance. It is verified that the circuit inductances are shown as functions of the current.

  • PDF

A Study on Analysis of Magnetic Noise in Three Phase Squirrel-Cage Induction Motor (3상 농형 유도전동기의 자기소음 해석에 관한 연구)

  • Shin, Dae-Chul;Kim, Han-Sung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.10 no.3
    • /
    • pp.72-82
    • /
    • 1991
  • The Magnetic noise generated in three phase induction motor are investigated. Total noises measured by using JEM-1313 code and sound length method and the experimental formulae are derived of magnetic fk={K+$\frac{Z_s}{P}$(1-S)}f[Hz] noise is measured in the stator of induction motor except rotor supplied from power source and their datum are analyzed and compared with one another. The experimental value of magnetic noises are equal to the theoretical value at 1440[Hz] and 1560[Hz]. The biggest magnetic harmonic is generated at 1560[Hz].

  • PDF

Fully Digitalized PWM and Vector Control of the Squirrel-Cage Induction Motor (눙형 유도 전동기의 전 디지털화된 PWM 발생 및 벡테제어)

  • 김한태;권봉환
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.6
    • /
    • pp.567-573
    • /
    • 1991
  • Full direct digital control of induction motor driver is implemented with a minimal hardware structure. This paper deals with the presentation of a low-cost single-chip microprocessor-based control system for three-phase PWM generation and vector control that control speed of the induction motor using the field-oriented control method. Rotor flux is estimated using the indirect sensing method based on the rotor circuit equation in the synchronously rotation reference frame, and slip angle and rotor position are calculated from rotor angular velocity and stator current. Through simulation and experiment, it is shown that the proposed scheme gives good static and dynamic performance to the induction motor drive.

  • PDF

A Direct Torque Control System for Improving Speed Response of Five-Phase Induction Motor (5상 유도전동기의 속도응답특성 개선을 위한 직접토크제어 시스템)

  • Kim, Min-Huei;Choi, Sung-Un
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.1
    • /
    • pp.66-74
    • /
    • 2012
  • This paper propose a improved direct torque control(DTC) system for improving operation of five-phase squirrel-cage induction motor(IM). A five-phase IM drives present unique characteristics due to the additional degrees of freedom and also drives possess many others advantage compared with the traditional three-phase motor drive system, such as reducing a amplitude of torque pulsation and increasing the reliability. In order to maximize the torque per ampere, the proposed motor has concentrated windings and the produced back-electromotive force(EMF) is almost trapezoidal, and the motor is supplied with the combined sinusoidal plus third harmonic of currents, there is necessary to controlled 3rd harmonic current. Also a DTC method is advantageous when it is applied to the five-phase IM, because the five-phase inverter provides 32 space vectors in comparison to 8 space voltage vectors into the three-phase inverter drive system. For presenting the superior performance of the proposed DTC, experimental results of speed control are presented using a 32-bit fixed point TMS320F2812 DSP with 1.5[hp] IM.

Fault Modeling and Diagnosis using Wavelet Decomposition in Squirrel-Cage Induction Motor Under Mixed Fault Condition (복합고장을 가지는 농형유도전동기의 모델링과 웨이블릿 분해를 이용한 고장진단)

  • Kim, Youn-Tae;Bae, Hyeon;Park, Jin-Su;Kim, Sung-Shin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.6
    • /
    • pp.691-697
    • /
    • 2006
  • Induction motors are critical components in industrial process. So there are many research in the condition based maintenance, online monitoring system, and fault detection. This paper presents a scheme on the detection and diagnosis of the three-phase squirrel induction motor under unbalanced voltage, broken rotor bar, and a combination of these two faults. Actually one fault happen in operation, it influence other component in motor or cause another faults. Accordingly it is useful to diagnose and detect a combination fault in induction motor as well as each fault. The proposed fault detection and diagnosis algorithm is based on the stator currents from the squirrel induction motor and simulated with the aid of Matlab Simulink.

Wing Technique: A Novel Approach for the Detection of Stator Winding Inter-Turn Short Circuit and Open Circuit Faults in Three Phase Induction Motors

  • Ballal, Makarand Sudhakar;Ballal, Deepali Makarand;Suryawanshi, Hiralal M.;Mishra, Mahesh Kumar
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.208-214
    • /
    • 2012
  • This paper presents a novel approach based on the loci of instantaneous symmetrical components called "Wing Shape" which requires the measurement of three input stator currents and voltages to diagnose interturn insulation faults in three phase induction motors operating under different loading conditions. In this methodology, the effect of unbalanced supply conditions, constructional imbalances and measurement errors are also investigated. The sizes of the wings determine the loading on the motor and the travel of the wings while their areas determine the degree of severity of the faults. This approach is also applied to detect open circuit faults or single phasing conditions in induction motors. In order to validate this method, experimental results are presented for a 5 hp squirrel cage induction motor. The proposed technique helps improve the reliability, efficiency, and safety of the motor system and industrial plant. It also allows maintenance to be performed in a more efficient manner, since the course of action can be determined based on the type and severity of the fault.

Robust Diagnosis Algorithm for Identifying Broken Rotor Bar Faults in Induction Motors

  • Hwang, Don-Ha;Youn, Young-Woo;Sun, Jong-Ho;Kim, Yong-Hwa
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.37-44
    • /
    • 2014
  • This paper proposes a new diagnosis algorithm to detect broken rotor bars (BRBs) faults in induction motors. The proposed algorithm is composed of a frequency signal dimension order (FSDO) estimator and a fault decision module. The FSDO estimator finds a number of fault-related frequencies in the stator current signature. In the fault decision module, the fault diagnostic index from the FSDO estimator is used depending on the load conditions of the induction motors. Experimental results obtained in a 75 kW three-phase squirrel-cage induction motor show that the proposed diagnosis algorithm is capable of detecting BRB faults with an accuracy that is superior to a zoom multiple signal classification (ZMUSIC) and a zoom estimation of signal parameters via rotational invariance techniques (ZESPRIT).

Inductances Evaluation of a Squirrel-Cage Induction Motor with Curved Dynamic Eccentricity

  • Lv, Qiang;Bao, Xiaohua;He, Yigang;Fang, Yong;Cheng, Xiaowei
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1623-1631
    • /
    • 2014
  • Eccentricity faults more or less exist in all rotating electrical machines. This paper establishes a more precise model of dynamic eccentricity (DE) in electrical machines named as curved dynamic eccentricity. It is a kind of axial unequal eccentricity which has not been investigated in detail so far but occurs in large electrical machines. The inductances of a large three-phase squirrel-cage induction machine (SCIM) under different levels of curved DE conditions are evaluated using winding function approach (WFA). These inductances include the stator self and mutual inductances, rotor self and mutual inductances, and mutual inductances between stator phases and rotor loops. A comparison is made between the calculation results under curved DE and the corresponding pure DE conditions. It indicates that the eccentricity condition will be more terrible than the monitored eccentricity based on the conventional pure DE model.

Rotor Failures Diagnosis of Squirrel Cage Induction Motors with Different Supplying Sources

  • Menacer, Arezki;Champenois, Gerard;Nait Said, Mohamed Said;Benakcha, Abdelhamid;Moreau, Sandrine;Hassaine, Said
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.219-228
    • /
    • 2009
  • The growing application and the numerous qualities of induction motors (1M) in industrial processes that require high security and reliability levels has led to the development of multiple methods for early fault detection. However, various faults can occur, such as stator short-circuits and rotor failures. Traditionally the diagnosis machine is done through a sinusoidal power supply, in the present paper we study experimentally the effects of the rotor failures, such as broken rotor bars in function of the ac supplying, the load and show the impact of the converter from diagnosis of the machine. The technique diagnosis used is based on the spectral analysis of stator currents or stator voltages respectively according to the types of induction motor ac supplying. So, four different ac supplying are considered: ${\odot}$ the IM is directly by the balanced three-phase network voltage source, ${\odot}$ the IM is fed by a sinusoidal current source given the controlled by hysteresis, ${\odot}$ the IM is fed (in open loop) by a scalar control imposing through ratio V/f=constant, ${\odot}$ the IM is controlled through a vector control using space vector pulse width modulation (SVPWM) technique inverter with an outer speed loop.