• Title/Summary/Keyword: Three phase core-type transformer

Search Result 7, Processing Time 0.02 seconds

Zero Sequence Impedance of Yg-Yg Three Phase Core Type Transformer (Yg-Yg 3상 내철형 변압기의 영상분 임피던스 분석)

  • Jo, Hyunsik;Cho, Sungwoo;Shin, Changhoon;Cha, Hanju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.6
    • /
    • pp.940-945
    • /
    • 2016
  • In this paper, zero sequence equivalent circuit of Yg-Yg three phase core-type transformer is analyzed. Many problems by iron core structure of the three phase transformer due to asymmetric three phase lines, which includes line disconnection, ground fault, COS OFF, and unbalanced load are reported in the distribution system. To verify a feasibility of zero sequence impedance of Yg-Yg type three phase transformer, fault current generation in the three phase core and shell-type Yg-Yg transformer is compared by PSCAD/EMTDC when single line ground fault is occurred. As a result, shell-type transformer does not affect the flow of fault current, but core-type transformer generate an adverse effect by the zero sequence impedance. The adverse effect is explained by the zero sequence equivalent circuit of core-type transformer and Yg-Yg type three phase core-type transformer supplies a zero sequence fault current to the distribution system.

Problem Analysis by Iron Core Structure of the Transformer on Asymmetric three Phase lines and Prevention Measures (비대칭 3상 선로에서 변압기의 철심구조별 문제점 분석 및 방지대책)

  • Shin, Dong-Yeol;Yun, Dong-Hyun;Cha, Han-Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.10
    • /
    • pp.1536-1541
    • /
    • 2012
  • The study analyzed problems by iron core structure of the three phased transformer on asymmetric three phase lines, which included line disconnections, ground faults, COS OFF, and unbalanced loads on the power distribution system. In particular, by analyzing PT combustion cases within the MOF, the study was able to analyze the combustion cause of the core-type transformer and its effect on the system, conduct simulations and practice demonstrations on the characteristics for each iron core structure of the three phase transformer using PSCAD/EMTDC, and suggest measures to prevent the combustion of the core-type transformer.

Analysis on Fault Current Limiting Characteristics of Three-Phase Transformer Type SFCL using Double Quench According to Three-Phase Ground-Fault Types (이중퀜치를 이용한 삼상변압기형 초전도한류기의 삼상지락 고장 종류에 따른 고장전류 제한 특성 분석)

  • Shin-Won Lee;Tae-Hee Han;Sung-Hun Lim
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.6
    • /
    • pp.614-619
    • /
    • 2023
  • The fault current limiting characteristics of three-phase transformer type superconducting fault current limiter (SFCL), which consisted of three-phase primary and secondary windings wound on E-I iron core, one high-TC superconducting (HTSC) element connected with the secondary winding of one phase and another HTSC element connected in parallel with other two secondary windings of two phases, were analyzed. Unlike other three-phase transformer type SFCLs with three HTSC elements, three-phase transformer type SFCL using double quench has the merit to perform fault current limiting operation for three-phase ground faults with two HTSC elements. To verify its proper three-phase ground fault current limiting operation, three-phase ground faults such as single-line ground, double-line ground and triple-line ground faults were generated in three-phase simulated power system installed with three-phase transformer type SFCL using double quench. From analysis of its fault current limiting characteristics based on tested results, three-phase transformer type SFCL using double quench was shown to be effectively operated for all three-phase ground faults.

Analysis on Fault Current Limiting Operation of Three-Phase Transformer Type SFCL Using Double Quench (이중퀜치를 이용한 삼상변압기형 한류기의 고장전류제한 동작 분석)

  • Han, Tae-Hee;Ko, Seok-Cheol;Lim, Sung-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.2
    • /
    • pp.184-189
    • /
    • 2022
  • In this paper, the fault current limiting operations of three-phase transformer type superconducting fault current limiter (SFCL) using double quench, which consisted of E-I iron core with three legs wound by primary and secondary windings and two superconducting modules (SCMs), were analyzed according to three-phase ground fault types. To verify the effective operation of the three-phase transformer type SFCL using double quench, the test circuit for three-phase ground faults was constructed, and the fault current tests were carried out. Through analysis on the fault current test results, the different fault current limiting characteristics of three-phase transformer type SFCL using double quench from three-phase transformer type SFCL using three SCMs were discussed.

Assembling and Insulation Test of 1MVA Single Phase HTS Transformer for Power Distribution

  • Kim, S. H.;Kim, W. S.;Kim, J. T.;Park, K. D.;H. G. Joo;G. W. Hong;J. H. Han;Lee, S. J.;S. Hahn
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.3
    • /
    • pp.30-33
    • /
    • 2003
  • 1MVA high temperature superconducting (HTS) transformer with double pancake windings made of BSCCO-2223 HTS tapes was designed and manufactured. And prototype transformer with the same capacity was manufactured also. The each rated voltage of the HTS transformer is 22.9 kV and 6.6 kV. Four parallel BSCCO-2223 HTS tapes were wound in the double pancake windings of low voltage side. In order to distribute the currents equally in each HTS tapes, the three times transposition was performed between the double pancake windings. The windings of prototype transformer were wound using copper tape with the same size as BSCCO-2223 HTS tape. The core of the transformer was designed and manufactured as a shell type core made of laminated silicon steel plate. The several characteristics tests for the prototype transformer were performed in liquid nitrogen and insulation tests were accomplished also.

Current Limiting Characteristics of Separated Three-phase Flux-coupling Type SFCL according to Winding Number of Coil 2 and Winding Direction (삼상 분리형 자속커플링 전류제한기의 2차 권선의 턴 수 및 결선 방향에 따른 전류제한 특성)

  • Kim, Yong-Jin;Du, Ho-Ik;Doo, Seung-Gyu;Kim, Min-Ju;Lee, Dong-Hyeok;Han, Byoung-Sung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.8
    • /
    • pp.694-697
    • /
    • 2009
  • The separated three-phase flux-coupling type superconducting fault current limiter(SFCL) is composed of a series transformer and superconducting unit of the YBCO coated conductor. The primary and secondary coils in the transformer were wound in series each other through an iron core and the YBCO coated conductor was connected with secondary coil in parallel. In this paper, we investigated the current limiting characteristics through winding number of coil 2 and winding direction in the flux-coupling type SFCL. Through the analysis, it was shown that additive polarity condition and lower winding number of coil 2 have advantaged from the point of view of fault current limiting and burned of YBCO coated conductor.

Characteristics according to turn ratio of Separated Three-Phase Flux-Coupling Type Superconducting Fault Current Limiter(SFCL) (삼상 분리형 자속커플링 전류제한기의 턴 수의 따른 전류제한 특성)

  • Kim, Yong-Jin;Du, Ho-Ik;Du, Seung-Gyu;Kim, Min-Ju;Lee, Dong-Hyeok;Han, Byoung-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.344-345
    • /
    • 2009
  • The flux-coupling type superconducting fault current limiter(SFCL) is composed of a series transformer and superconducting unit of the YBCO coated conductor. The primary and secondary coils in the transformer were wound in series each other through an iron core and the YBCO coated conductor was connected with secondary coil in parallel. In a normal condition, the flux generated from a primary coil is cancelled out by its structure and the zero resistance of the YBCO thin films. When a fault occurs, the resistance of the YBCO coated conductor was generated and the fault current was limited by the SFCL. In this paper, we investigated the fault current limiting characteristics according to turn ratio in the flux-coupling type SFCL. The experiment results that the fault current limiting characteristics was improved according to turn ratio.

  • PDF