• 제목/요약/키워드: Three dimensions numerical analysis

검색결과 58건 처리시간 0.027초

Defocusing 기법을 이용한 마이크로 믹서내의 3 차원 유동장 측정연구 (The study of three dimentional flow field using defocusing method in micromixer)

  • 김수헌;윤상열;김경천
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2005년도 추계학술대회 논문집
    • /
    • pp.99-102
    • /
    • 2005
  • This study was conducted for obtaining the optimized data to build the mixer or micro fluid device as measuring the three dimensions flow field in micro mixer. To acquire the rapid diffusion on the region of low Reynolds (Re < 100), the staggered herringbone mixer using chaotic advection was selected in this case. At first, by conducting the numerical analytical virtual experiment using CFD-ACE+, three dimensions flow field in the micro mixer was estimated As this flow field was proven using defocusing particle tracing method, the behavior of micro flow with three dimensional aspects could be analyzed. Numerical analysis and flow pattern in the micro mixer by experimental verification made to be able to analyze the chaotic advection. These can be important sources for building more optimized form. Verifying the information of three dimensional flow structure, these information can be used as the data for developing and improving the $\mu$ -TAS.

  • PDF

충격하중계수의 크기에 따른 유한평판의 충격하중 작용점에서의 응력해석 (Stress Analysis at an Impact Loading Point of Finite Plates according to the dimensions of Impact Loading Parameter)

  • 김지훈;심재기;양인영
    • 한국안전학회지
    • /
    • 제11권1호
    • /
    • pp.46-52
    • /
    • 1996
  • In this paper, an analytical method is proposed to find the dimensions of impact stresses with using the dimensions of impact loading parameter regardless of mass of impactor, velocity of impactor, and plate thickness. In analytical method of Impulsive stresses, the three-dimensional dynamic theory of elasticity using rectangular coordinates and the potential theory of displacement are utilized, and when the measurement of Impact loading is difficult especially for a steel ball colliding on an infinite plate, the impact loading can be obtained by using the classical plate theory and Hertz’s contact theory. And in the numerical analysis, the fast Fourier transform (F. F. T.) algorithm and the numerical inverse Laplace transformation are used because the analysis of impact loading Is difficult to obtain solutions by using the thress-dimensional dynamic theory of elasticity.

  • PDF

마찰력이 개재된 3차원 강체충돌 해석 - 타원체간 충돌 - (Analysis of Three-Dimensional Rigid-Body Collisions with Friction -CoIlisions between EIlipsoids-)

  • 한인환;조정호
    • 대한기계학회논문집A
    • /
    • 제20권5호
    • /
    • pp.1486-1497
    • /
    • 1996
  • The problem of determining the 3-demensional motion of any two rough bodies after a collision involves some rather long analysis and yet in some points it differs essentially from the corresponding problem in tdwo dimensions. We consider a special problem where two rough ellipsolids moving in any manner collide, and analyze the three dimensional impact process with Coulomb friction and Poisson's hypothesis. The differential equations that describe that process of the impact induce a flow in the tangent velocity space, the flow patterns characterize the possible impact cases. By using the graphic method in impulse space and numerical integration thchnique, we analyzed the impact process inall the possible cases and presented the algorithm for determining the post-impact motion. The principles could be applied to the general problem in three dimensions. We verified the effectiveness of the analysis results by simulating the numerous significant examples.

Three dimensional seismic and static stability of rock slopes

  • Yang, X.L.;Pan, Q.J.
    • Geomechanics and Engineering
    • /
    • 제8권1호
    • /
    • pp.97-111
    • /
    • 2015
  • The kinematical approach of limit analysis is used to estimate the three dimensional stability analysis of rock slopes with nonlinear Hoek-Brown criterion under earthquake forces. The generalized tangential technique is introduced, which makes limit analysis apply to rock slope problem possible. This technique formulates the three dimensional stability problem as a classical nonlinear programming problem. A nonlinear programming algorithm is coded to search for the least upper bound solution. To prove the validity of the present approach, static stability factors are compared with the previous solutions, using a linear failure criterion. Three dimensional seismic and static stability factors are calculated for rock slopes. Numerical results of indicate that the factors increase with the ratio of slope width and height, and are presented for practical use in rock engineering.

Buckling of insulated irregular transition flue gas ducts under axial loading

  • Ramadan, H.M.
    • Structural Engineering and Mechanics
    • /
    • 제43권4호
    • /
    • pp.449-458
    • /
    • 2012
  • Finite element buckling analysis of insulated transition flue ducts is carried out to determine the critical buckling load multipliers when subjected to axial compression for design process. Through this investigation, the results of numerical computations to examine the buckling strength for different possible duct shapes (cylinder, and circular-to-square) are presented. The load multipliers are determined through detailed buckling analysis taking into account the effects of geometrical construction and duct plate thickness which have great influence on the buckling load. Enhancement in the buckling capacity of such ducts by the addition of horizontal and vertical stiffeners is also investigated. Several models with varying dimensions and plate thicknesses are examined to obtain the linear buckling capacities against duct dimensions. The percentage improvement in the buckling capacity due to the addition of vertical stiffeners and horizontal Stiffeners is shown to be as high as three times for some cases. The study suggests that the best location of the horizontal stiffener is at 0.25 of duct depth from the bottom to achieve the maximum buckling capacity. A design equation estimating the buckling strength of geometrically perfect cylindrical-to-square shell is developed by using regression analysis accurately with approximately 4% errors.

유한요소법을 이용한 레이저 표면경화처리 공정변수의 민감도 해석 (Sensitivity Analysis of Processing Parameters for the Laser Surface Hardening Treatment by Using the Finite Element Method)

  • 이세환;양영수
    • Journal of Welding and Joining
    • /
    • 제19권2호
    • /
    • pp.228-234
    • /
    • 2001
  • A methodology is developed and used to evaluate the response sensitivity of the thermal systems to variations in their design parameters. Technique for computing the sensitivity of temperature distributions to changes in processing parameters needed to decide the more effective laser input parameters for laser surface hardening treatment is considered. In this study, a state equation governing the heat flow in laser surface treatment is analyzed using a three-dimensional finite element method and sensitivity data of the processing parameter obtained using a direct differentiation method is applied to the sensitivity analysis. The interesting processing parameters are taken as the laser scan velocity and laser beam radius ( $r_{ b}$), and the sensitivities of the temperature T versus v and $r_{b}$ are analyzed. These sensitivity results are obtained with another parameters fixed. To verify the numerical analysis results, hardened layer dimensions (width and depth) of the numerical analysis are compared with the experimental ones.nes.

  • PDF

The flexural behavior of ferrocement RC channel slabs

  • Yousry B.I. Shaheen;Ashraf M. Mahmoud
    • Structural Engineering and Mechanics
    • /
    • 제92권1호
    • /
    • pp.1-23
    • /
    • 2024
  • The current study examines the experimental and numerical performance of reinforced concrete (RC) channel slabs made of ferrocement that have been reinforced with fiber glass, expanded steel mesh, and welded steel mesh. As part of the testing program, ten RC channel slabs with dimensions of 500 mm×40 mm×2500 mm were loaded flexibly. The three main factors that can be altered are the mesh layer count, the type of reinforcing materials, and the reinforcement volume fraction. The main objective is to assess the effects of fortifying composite RC channel slabs with novel inventive materials. ANSYS-16.0 Software was used to simulate the behavior of composite channel slabs using nonlinear finite element analysis (NLFEA). It also shows how parametric analysis can be used to pinpoint variables like variations in slab dimensions that could significantly affect the mechanical behavior of the model. The obtained experimental and numerical results showed that finite element (FE) simulations had a tolerable degree of accuracy in estimating experimental values. It is crucial to show that specimens strengthened with fiber glass meshes gained about 12% lessstrength than specimens strengthened with expanded or welded steel meshes. In addition, RC channel slab reinforcement made of welded steel meshes has a 24% higher strength than expanded steel meshes. Tested under flexural loads, ferrocement specimens outperform conventional reinforced concrete specimens in terms of ultimate loads and energy absorption.

레이저 표면 경화처리 긍정변수의 민감도 해석에 관한 연구 (A study on the sensitivity analysis of processing parameters for the laser surface hardening treatment)

  • 이세환;양영수
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2000년도 특별강연 및 추계학술발표대회 개요집
    • /
    • pp.260-263
    • /
    • 2000
  • A methodology is developed and many used to evaluate the response sensitivity of the thermal systems to variations in their design parameters. Technique for computing the sensitivity of temperature distributions to changes in processing parameters needed for deciding the more effective laser input parameters for laser surface hardening treatment are considered. In this study, a state equation governing the heat flow in laser surface treatment is analyzed using a three-dimensional finite element method and sensitivity data of the processing parameter obtained using a direct differentiation method applied for sensitivity analysis. The interesting processing parameter is taken as the laser scan velocity and characteristic beam radius( $r_{b}$) of the sensitivity of the temperature T versus v and $r_{b}$ is analyzed. And these sensitivity results obtained in another parameters are fixed condition. To verifying the numerical analysis results, hardened layer dimensions (width and depth) of the numerical analysis compared with the results of an experimental data.ata.

  • PDF

Cyclic load testing and numerical modeling of concrete columns with substandard seismic details

  • Marefat, Mohammad S.;Khanmohammadi, Mohammad;Bahrani, Mohammad K.;Goli, Ali
    • Computers and Concrete
    • /
    • 제2권5호
    • /
    • pp.367-380
    • /
    • 2005
  • Recent earthquakes have shown that many of existing buildings in Iran sustain heavy damage due to defective seismic details. To assess vulnerability of one common type of buildings, which consists of low rise framed concrete structures, three defective and three standard columns have been tested under reversed cyclic load. The substandard specimens suffered in average 37% loss of strength and 45% loss of energy dissipation capacity relative to standard specimens, and this was mainly due to less lateral and longitudinal reinforcement and insufficient sectional dimensions. A relationship has been developed to introduce variation of plastic length under increasing displacement amplitude. At ultimate state, the length of plastic hinge is almost equal to full depth of section. Using calibrated hysteresis models, the response of different specimens under two earthquakes has been analyzed. The analysis indicated that the ratio between displacement demand and capacity of standard specimens is about unity and that of deficient ones is about 1.7.

미세 레이저 용접에서 용융부 형상예측을 위한 열원의 방정식에 관한 연구 (a Study on Heat Source Equations for the Prediction of Weld Shape in Laser Micro-welding)

  • 장원석;나석주
    • Journal of Welding and Joining
    • /
    • 제18권4호
    • /
    • pp.76-81
    • /
    • 2000
  • In this research, various heat source equations that have been proposed in previous study were calculated and compared with new model in various laser parameters. This is to treat the problem of predicting, by numerical analysis, the thermo-mechanical behaviors of laser spot welding for thin stainless steel plates. A finite element code, ABAQUS is used for the heat transfer analysis with a three-dimensional plane assumption. Experimental studies if the laser spot welding have also bee conducted to validate the numerical models presented. The results suggest that temperature profiles and weld dimensions are varied according to the heat source of the laser beam. For this reason, it is essential to incorporate an accurate description of the heat source.

  • PDF