• Title/Summary/Keyword: Three dimensional numerical computation

Search Result 141, Processing Time 0.025 seconds

Analysis of Optical Pickup Actuator by 3-D EMCN method (3-D EMCN법을 이용한 광 픽업 액츄에이터의 해석)

  • Kim, Gin-A;Chung, Tea-Kyung;Choi, In-Ho;Hong, Sam-Yul
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.771-773
    • /
    • 2001
  • In this paper, three dimensional Equivalent Magnetic Circuit Method(3-D EMCN method) a numerical analysis method which supplements to magnetic equivalent circuit adding numerical technique, is proposed for analysis Optical Pickup Actuator. (3) This method provides better characteristics both in precision of the analysis and in computation time than other analysis method such as three-dimensional Finite Element Method. We choose the simple 2-magnet moving coil type pickup actuator model and verify upper yoke effect using this method.

  • PDF

Analysis and Optimal Design of Optical Pickup Actuator by 3-D EMCN method (3D-EMCN범을 이용한 광 픽업 엑츄에이터의 해석 및 최적설계)

  • Kim, Gin-A;Chung, Tea-Kyung;Choi, In-Ho;Hong, Sam-Yul
    • Proceedings of the KIEE Conference
    • /
    • 2001.10a
    • /
    • pp.12-14
    • /
    • 2001
  • In this paper, three dimensional Equivalent Magnetic Circuit Method(3-D EMCN method), a numerical analysis method which supplements to magnetic equivalent circuit adding numerical technique, is proposed for analysis Optical Pickup Actuator. [3] This method provides better characteristics both in precision of the analysis and in computation time than other analysis method such as three-dimensional Finite Element Method. RCS Niching Genetic Algorithm are used for optimal design.

  • PDF

Three Dimensional Supersonic Jet Flow Analysis Impinging on Flame Deflector Surface (화염유도로 주위의 3차원 초음속 제트 유동 해석)

  • Park, S.K.;Choi, B.K.;Yoon, K.T.;Woo, Y.C.;Lee, D.S.;Kang, S.I.
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.494-498
    • /
    • 2001
  • When supersonic jet impinges on wall from the nozzle, complex flow pattern appears such as Mach disc, expansion fan, and jet boundary. The numerical computation of this supersonic jet is important on flame deflecctor design for launch space especially. In this paper, we analyzed supersonic jet structure impinging on deflector wall using three dimensional steady and unsteady compressible equation and showed temperature and pressure distribution on the wall surface. As a result, some dominant factors of jet flows are discussed for conceptual design of flame deflector.

  • PDF

Time Historical Response Analysis of Three Dimensional Rectilinear Structure using the TSCM (전달강성계수법을 이용한 3차원 직선형 구조물의 시간이력응답 해석)

  • 문덕홍;강현석;최명수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.108-115
    • /
    • 2002
  • This paper suggests a new analysis algorithm for the time historical response of three dimensional rectilinear structure which is frequently found in a pipe line system of plant by the combination of the transfer stiffness coefficient method(TSCM) and the Newmark method. The present analysis algorithm for a time historical response can improve the computational accuracy and time remarkably owing to advantages of the TSCM in comparison with transfer matrix method(TMM). The structural system is modeled as a lumped mass system in this method. The analysis algorithm was formulated far the three dimensional rectilinear structure. We confirmed the validity of the present algorithm by comparing the numerical computation results of TSCM with those of TMM.

THE STUDY OF AERO-ACOUSTICS CHARACTERISTIC BY BOUNDARY CONDITIONS (경계조건에 따른 공력음향 특성에 관한 연구)

  • Lee, S.S.;Kim, J.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.75-80
    • /
    • 2009
  • The present paper focuses on the analysis of aero-acoustics characteristic by several boundary conditions. In this simulation, a high-order and high-resolution numerical schemes are used for the accurate computation of compressible flow with several boundary conditions including characteristic boundary conditions as well as extrapolation and zonal characteristic boundary condition. These boundary conditions are applied to the computation of two dimensional circular cylinder flows with Mach number of 0.3 and Reynolds number of 400. The computation results are validated with measurement datum and other computation results for the Strouhal frequency of vortex shedding, the mean drag coefficient and root-mean-square lift for the unsteady periodic flow regime. Secondary frequency is predicted by three kinds of boundary conditions characteristic.

  • PDF

THE STUDY OF AERO-ACOUSTICS CHARACTERISTICS BY THE BOUNDARY CONDITIONS OF HIGH ORDER SCHEME (고해상도 수치기법의 경계조건에 따른 공력음향 특성에 관한 연구)

  • Lee, S.S.;Kim, J.S.
    • Journal of computational fluids engineering
    • /
    • v.14 no.3
    • /
    • pp.25-32
    • /
    • 2009
  • The present paper focuses on the analysis of aero-acoustics characteristic by appling different four boundary conditions. The high-order and high-resolution numerical schemes are used for discrete accurate computation of compressible flow. The four boundary conditions include extrapolation, characteristic boundary condition, zonal characteristic boundary condition. These boundary conditions are applied to the computation of two dimensional circular cylinder flows with Mach number of 0.3 and Reynolds number of 400. The computation results are validated against measurement data and other computation results for the Strouhal frequency of vortex shedding, the mean drag coefficient and root-mean-square lift for the unsteady periodic flow regime. The characteristics of secondary frequency is predicted by three kinds of boundary conditions.

High order computation on the three dimensional wakes past a circular cylinder (고해상도수치기법에 의한 원형실린더 주위의 3차원 후류유동 특성연구)

  • Lee, Sang-Soo;Kim, Jae-Soo;Kim, Tae-Su
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.622-625
    • /
    • 2008
  • While the research for flow over a circular cylinder has been actively carried out up to the present, it has been known that the flow has not been clarified even now. Various complex flow and aero-acoustic characteristics exist around a circular cylinder such as flow separation, wake and pressure wave propagation. In this paper, research was carried out for wake flow and aeroacoustics over a circular cylinders by using high order, high resolution techniques that are used in two dimensional aero- acoustic analysis. OpenMP parallel processing method was used. For the numerical result, the periodic characteristic of Strouhal Number due to vortex shedding was comparatively analyzed with other experiment values and two dimensional numerical results.

  • PDF

Typhoon Surge Hindcast in the East China Sea Using a Three-dimensional Numerical Model (3 차원수치(次元數値)모델을 이용(利用)한 동지군해(東支郡海)의 태풍해일(颱風海溢)의 산정(算定))

  • Choi, Byung Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.4 no.4
    • /
    • pp.67-78
    • /
    • 1984
  • A three-dimensional hydrodynamic numerical model of the Yellow Sea and the East China Sea was developed to investigate the intermediate scale processes in the region. The model was applied to the three dimensional computation of the typhoon induced currents on the continental: shelf for a 5 days period in Summer, 1978. The circulation pattern showing depth and spatial distribution of currents over the Yellow Sea and the East China Sea is presented and analyzed. This initial study has been undertaken in association with the programme of establishment of real-time forecasting schemes based on dynamic principles.

  • PDF

A Three-Dimensional Numerical Simulation of Rotating Stall in an Axial Compressor (축류 압축기에서의 선회실속에 관한 3차원 수치해석)

  • Choi, Min-Suk;Oh, Seong-Hwan;Ki, Dock-Jong;Baek, Je-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.1 s.256
    • /
    • pp.68-75
    • /
    • 2007
  • A three-dimensional computation is conducted to simulate a three-dimensional rotating stall in a low speed axial compressor. It is generally known that a tip leakage flow has an important role on a stall inception. However, almost of researchers have taken no interest in a role of the hub-comer-stall on the rotating stall even though it is a common feature of the flow in an axial compressor operating near stall and it has a large effect on the flows and loss characteristics. Using a time-accurate unsteady simulation, it is found that the hub-comer-stall may be a trigger to collapse the axisymmetric flows under high loads. An asymmetric disturbance is initially originated in the hub-comer-stall because separations are naturally unstable flow phenomena. Then this disturbance is transferred to the tip leakage flows from the hub-comer-stall and grows to be stationary stall cells, which adheres to blade passage and rotate at the same speed as the rotor. When stationary stall cells reach a critical size, these cells then move along the blade row and become a short-length-scale rotating stall. The rotational speed of stall cells quickly comes down to 79 percent of rotor so they rotate in the opposite direction to the rotor blades in the rotating frame.

AEGIS: AN ADVANCED LATTICE PHYSICS CODE FOR LIGHT WATER REACTOR ANALYSES

  • Yamamoto, Akio;Endo, Tomohiro;Tabuchi, Masato;Sugimura, Naoki;Ushio, Tadashi;Mori, Masaaki;Tatsumi, Masahiro;Ohoka, Yasunori
    • Nuclear Engineering and Technology
    • /
    • v.42 no.5
    • /
    • pp.500-519
    • /
    • 2010
  • AEGIS is a lattice physics code incorporating the latest advances in lattice physics computation, innovative calculation models and efficient numerical algorithms and is mainly used for light water reactor analyses. Though the primary objective of the AEGIS code is the preparation of a cross section set for SCOPE2 that is a three-dimensional pin-by-pin core analysis code, the AEGIS code can handle not only a fuel assembly but also multi-assemblies and a whole core geometry in two-dimensional geometry. The present paper summarizes the major calculation models and part of the verification/validation efforts related to the AEGIS code.