• Title/Summary/Keyword: Three dimensional finite element stress analysis

Search Result 617, Processing Time 0.026 seconds

Analysis of Elastic-Plastic J Integrals for 3-Dimensional Cracks Using Finite Element Alternating Method (유한요소 교호법을 이용한 삼차원 균열의 탄소성 J 적분 해석)

  • Park, Jai-Hak
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.2
    • /
    • pp.145-152
    • /
    • 2009
  • SGBEM(Symmetric Galerkin Boundary Element Method)-FEM alternating method has been proposed by Nikishkov, Park and Atluri. In the proposed method, arbitrarily shaped three-dimensional crack problems can be solved by alternating between the crack solution in an infinite body and the finite element solution without a crack. In the previous study, the SGBEM-FEM alternating method was extended further in order to solve elastic-plastic crack problems and to obtain elastic-plastic stress fields. For the elastic-plastic analysis the algorithm developed by Nikishkov et al. is used after modification. In the algorithm, the initial stress method is used to obtain elastic-plastic stress and strain fields. In this paper, elastic-plastic J integrals for three-dimensional cracks are obtained using the method. For that purpose, accurate values of displacement gradients and stresses are necessary on an integration path. In order to improve the accuracy of stress near crack surfaces, coordinate transformation and partitioning of integration domain are used. The coordinate transformation produces a transformation Jacobian, which cancels the singularity of the integrand. Using the developed program, simple three-dimensional crack problems are solved and elastic and elastic-plastic J integrals are obtained. The obtained J integrals are compared with the values obtained using a handbook solution. It is noted that J integrals obtained from the alternating method are close to the values from the handbook.

A 3-dimensional Finite Element analysis of the Temperature and Stress Development in Mass Concrete Pier due to Heat of Hydration (매스콘크리트 교각의 수화열에 의한 온도 및 응력 거동에 대한 3차원 유한요소 해석)

  • 주영춘;김은겸;신치범
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10b
    • /
    • pp.928-933
    • /
    • 1998
  • The temperature and stress behaviour of mass concrete pier at early ages was analysed based on the finite element method. The pier investigated is a three-dimensional structure of which the cross-sectional shape varies from a circle to an ellipsoid along the longitudinal axis. In order to obtain the transient temperature and stress distributions in the structure, a three dimensional method was adopted, because the structure of this type cannot be modeled accurately by a two-dimensional method. Temperature analysis was performed by taking into consideration of the cement type and content, boundary and environment conditions including the variations of atmospheric temperature and wind velocity. The results of this study may be useful for the temperature control to restrain thermal cracking and the construction management to design the resonable curing method of mass concrete structure.

  • PDF

A three-dimensional finite element analysis of two/multiple shots impacting on a metallic component

  • Hong, T.;Ooi, J.Y.;Shaw, B.A.
    • Structural Engineering and Mechanics
    • /
    • v.29 no.6
    • /
    • pp.709-729
    • /
    • 2008
  • This paper describes a three-dimensional dynamic finite element analysis of two/multiple shots impacting on a metallic component. The model is validated against a published numerical study. An extensive parametric study is conducted to investigate the effect of shot impacting with overlap on the resulting residual stress profile within the component, including time interval between shot impacts, separation distance between the impacting points, and impacting velocity of successive shots. Several meaningful conclusions can be drawn regarding the effect of shot impacting with overlap.

THE EFFECTS OF MESH STYLE ON THE FINITE ELEMENT ANALYSIS FOR ARTIFICIAL HIP JOINTS

  • Shin, Jae-Min;Lee, Dong-Sun;Kim, Sung-Ki;Jeong, Da-Rae;Lee, Hyun-Geun;Kim, Jun-Seok
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.15 no.1
    • /
    • pp.57-65
    • /
    • 2011
  • In this paper, a good quality mesh generation for the finite element method is investigated for artificial hip joint simulations. In general, bad meshes with a large aspect ratio or mixed elements can give rise to excessively long computational running times and extremely high errors. Typically, hexahedral elements outperform tetrahedral elements during three-dimensional contact analysis using the finite element method. Therefore, it is essential to mesh biologic structures with hexahedral elements. Four meshing schemes for the finite element analysis of an artificial hip joint are presented and compared: (1) tetrahedral elements, (2) wedge and hexahedral elements, (3) open cubic box hexahedral elements, and (4) proposed hexahedral elements. The proposed meshing scheme is to partition a part before seeding so that we have a high quality three-dimensional mesh which consists of only hexahedral elements. The von Mises stress distributions were obtained and analyzed. We also performed mesh refinement convergence tests for all four cases.

A Study of Predicting Method of Residual Stress Using Artificial Neural Network in $CO_2$Arc welding

  • Cho, Y.;Rhee, S.;Kim, J.H.
    • International Journal of Korean Welding Society
    • /
    • v.1 no.2
    • /
    • pp.51-60
    • /
    • 2001
  • A prediction method for determining the welding residual stress by artificial neural network is proposed. A three-dimensional transient thermo-mechanical analysis has been performed for the $CO_2$ arc welding using the finite element method. The first part of numerical analysis performs a three-dimensional transient heat transfer analysis, and the second part then uses the results of the first part and performs a three-dimensional transient thermo-elastic-plastic analysis to compute transient and residual stresses in the weld. Data from the finite element method are used to train a back propagation neural network to predict the residual stress. Architecturally, the fully interconnected network consists of an input layer for the voltage and current, a hidden layer to accommodate the failure mechanism mapping, and an output layer for the residual stress. The trained network is then applied to the prediction of residual stress in the four specimens. It is concluded that the accuracy of the neural network predicting method is fully comparable with the accuracy achieved by the traditional predicting method.

  • PDF

A new 3D interface element for three dimensional finite element analysis of FRP strengthened RC beams

  • Kohnehpooshi, O.;Noorzaei, J.;Jaafar, M.S.;Saifulnaz, M.R.R.
    • Interaction and multiscale mechanics
    • /
    • v.4 no.4
    • /
    • pp.257-271
    • /
    • 2011
  • The analysis of interfacial stresses in structural component has been the subject of several investigations but it still requires more effort and studies. In this study a general three-dimensional interface element has been formulated for stress and displacement analyses in the interfacial area between two adjacent plate bending element and brick element. Interface element has 16 nodes with 5 degrees of freedom (DOF) in each node adjacent to plate bending element and 3 DOF in each node adjacent to brick element. The interface element has ability to transfer three translations from each side of interface element and two rotations in the side adjacent to the plate element. Stiffness matrix of this element was formulated and implemented in three-dimensional finite element code. Application of this element to the reinforced concrete (RC) beam strengthened with fiber reinforced polymer (FRP) including variation of deflection, slip between plate and concrete, normal and shear stresses distributions in FRP plates have been verified using experimental and numerical work of strengthened RC beams carried out by some researchers. The results show that this interface element is effective and can be used for structural component with these types of interface elements.

Stress concentration and deflection of simply supported box girder including shear lag effect

  • Yamaguchi, Eiki;Chaisomphob, Taweep;Sa-nguanmanasak, Jaturong;Lertsima, Chartree
    • Structural Engineering and Mechanics
    • /
    • v.28 no.2
    • /
    • pp.207-220
    • /
    • 2008
  • The shear lag has been studied for many years. Nevertheless, existing research gives a variety of stress concentration factors. Unlike the elementary beam theory, the application of load is not unique in reality. For example, concentrated load can be applied as point load or distributed load along the height of the web. This non-uniqueness may be a reason for the discrepancy of the stress concentration factors in the existing studies. The finite element method has been often employed for studying the effect of the shear lag. However, not many researches have taken into account the influence of the finite element mesh on the shear lag phenomenon, although stress concentration can be quite sensitive to the mesh employed in the finite element analysis. This may be another source for the discrepancy of the stress concentration factors. It also needs to be noted that much less studies seem to have been conducted for the shear lag effect on deflection while some design codes have formulas. The present study investigates the shear lag effect in a simply supported box girder by the three-dimensional finite element method using shell elements. The whole girder is modeled by shell elements, and extensive parametric study with respect to the geometry of a box girder is carried out. Not only stress concentration but also deflection is computed. The effect of the way load is applied and the dependency of finite element mesh on the shear lag are carefully treated. Based on the numerical results thus obtained, empirical formulas are proposed to compute stress concentration and deflection that includes the shear lag effect.

An evaluation of the stress effect of different occlusion concepts on hybrid abutment and implant supported monolithic zirconia fixed prosthesis: A finite element analysis

  • Yesilyurt, Nilgün Gulbahce;Tuncdemir, Ali Riza
    • The Journal of Advanced Prosthodontics
    • /
    • v.13 no.4
    • /
    • pp.216-225
    • /
    • 2021
  • PURPOSE. The aim of this study is to evaluate the effects of canine guidance occlusion and group function occlusion on the degree of stress to the bone, implants, abutments, and crowns using finite element analysis (FEA). MATERIALS AND METHODS. This study included the implant-prosthesis system of a three-unit bridge made of monolithic zirconia and hybrid abutments. Three-dimensional (3D) models of a bone-level implant system and a titanium base abutment were created using the original implant components. Two titanium implants, measuring 4 × 11 mm each, were selected. The loads were applied in two oblique directions of 15° and 30° under two occlusal movement conditions. In the canine guidance condition, loads (100 N) were applied to the canine crown only. In the group function condition, loads were applied to all three teeth. In this loading, a force of 100 N was applied to the canine, and 200-N forces were applied to each premolar. The stress distribution among all the components of the implant-bridge system was assessed using ANSYS SpaceClaim 2020 R2 software and finite element analysis. RESULTS. Maximum stress was found in the group function occlusion. The maximum stress increased with an increase in the angle of occlusal force. CONCLUSION. The canine guidance occlusion with monolithic zirconia crown materials is promising for implant-supported prostheses in the canine and premolar areas.

A Study of Predicting Method of Residual Stress Using Artificial Neural Network in $CO_2$ Arc Welding (인공신경회로망을 이용한 탄산가스 아크 용접의 잔류응력 예측에 관한 연구)

  • 조용준;이세헌;엄기원
    • Journal of Welding and Joining
    • /
    • v.13 no.3
    • /
    • pp.77-88
    • /
    • 1995
  • A prediction method for determining the welding residual stress by artificial neural network is proposed. A three-dimensional transient thermomechanical analysis has been performed for the CO$_{2}$ arc welding using the finite element method. The first part of numerical analysis performs a three-dimensional transient heat transfer analysis, and the second part then uses the results of the first part and performs a three-dimensional transient thermo-elastic-plastic analysis to compute transient and residual stresses in the weld. Data from the finite element method are used to train a backpropagation neural network to predict the residual stress. Architecturally, the fully interconnected network consists of an input layer for the voltage and current, a hidden layer to accommodate the ailure mechanism mapping, and an output layer for the residual stress. The trained network is then applied to the prediction of residual stress in the four specimens. It is concluded that the accuracy of the neural network predicting method is fully comparable with the accuracy achieved by the traditional predicting method.

  • PDF

Two-Dimensional Finite Element Analysis of Bone Resorption from the Artificial Hip Replacement (인공고관절 골흡수로 인한 응력분포 변화의 2차원 유한요소 해석)

  • Choi, Hyung-Yeon;Chae, Soo-Won;Kim, Sung-Kon
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.1
    • /
    • pp.25-32
    • /
    • 1995
  • Clinically, proximal bone resorption in the femur is frequently seen postoperatively on the follow up XI-rays after total hip replacement (THR). We developed the finite element model of cementless THR. The model is two dimensional side plate model, whereby the three dimensional structural integrity of the bone can be accounted for by a separate two dimensional mesh, a side plate. The subject of this article is the development and application of this two dimensional side plate FEM to study the reverse effect of the various degree of bone resorption of femur after THR. The results of this study indicates that 1) two dimensional side plate model is good and simple alternative to complex three dimensional model and 2) the severity of the proximal bone resorption has the effect of more increasing stress on the cortex at the level of femoral stem tip.

  • PDF