• Title/Summary/Keyword: Three Dimensional Turbulent Flow

Search Result 398, Processing Time 0.03 seconds

Numerical simulations of a horizontal axis water turbine designed for underwater mooring platforms

  • Tian, Wenlong;Song, Baowei;VanZwieten, James H.;Pyakurel, Parakram;Li, Yanjun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.1
    • /
    • pp.73-82
    • /
    • 2016
  • In order to extend the operational life of Underwater Moored Platforms (UMPs), a horizontal axis water turbine is designed to supply energy for the UMPs. The turbine, equipped with controllable blades, can be opened to generate power and charge the UMPs in moored state. Three-dimensional Computational Fluid Dynamics (CFD) simulations are performed to study the characteristics of power, thrust and the wake of the turbine. Particularly, the effect of the installation position of the turbine is considered. Simulations are based on the Reynolds Averaged Navier-Stokes (RANS) equations and the shear stress transport ${\kappa}-{\omega}$ turbulent model is utilized. The numerical method is validated using existing experimental data. The simulation results show that this turbine has a maximum power coefficient of 0.327 when the turbine is installed near the tail of the UMP. The flow structure near the blade and in the wake are also discussed.

Modeling of Combustion in Co-Generation / Industrial Boiler Furnace (열병합/산업용 보일러 화로에서의 연소 해석)

  • Kim, Byoung-Yun;Park, Pu-Min;Lee, Kyoung-Mo
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.842-846
    • /
    • 2001
  • Our company produces boilers for industrial usages or power plants. The aim of this study is to investigate the flame structure, heat transfer to evaporator tube wall and NOx emission in the furnaces. Also we are to derive correct FEGT(Furnace Exit Gas Temperature) characteristic curve. When we design furnace and superheater, economizer etc. FEGT characteristic curve is very important factor for optimum design. We calculated turbulent reacting flow, heat transfer and NOx emission in furnace by using numerical modeling with the help of commercial code. Three dimensional steady state calculation is done. k-e turbulence model and equilibrium chemistry combustion model with $\beta-probability$ density function is used. To calculate radiation heat transfer discrete ordinates model is used. And we measured FEGT at several operating plants. Measurement is done by R-type thermocouple. Radiation shield is attached to the thermocouple to prevent radiation effect. Measured and calculated results show good agreement. And we could understand the flame structure and NOx formation positions in each furnaces.

  • PDF

Numerical Investigation of Hydraulic Jump in a Spillway (여수로에서 도수 수치해석 연구)

  • Paik, Joongcheol;Ryu, Yong Uk;Lee, Nam-Ju
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.66-66
    • /
    • 2017
  • Hydraulic jump is typically designed to occur over low-haed dam spillways and weirs in the river. An important engineering application of the hydraulic jump is to dissipate the intense kinetic energy of the flows over such hydraulic structures. Turbulent flow and roller-like vortex riding up the free sureface of the jump cause most of the energy dissipation. We carry out a high resolution three-dimensional numerical simulations of a submerged hydraulic jump in a spillway and compare numerical results with a laboratory measurement obtained by the PIV. The numerical results further show the dynamic behavoirs of the inner and outer layers of the submerged wall-jet and the recirculating roller of the hydraulic jump.

  • PDF

A Study on Grid Dependencies of the Numerical Solutions for Ship Viscous Flows (배주위 점성유동장에 대한 수치해의 격자의존성에 관한 연구)

  • Kang, K.J.;Lee, S.H.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.4
    • /
    • pp.58-65
    • /
    • 1994
  • It is very important to understand characteristics of solution due to the variation of computational grid sizes, especially when turbulence model not incorporating wall-function is used. The present paper performs numerical investigation on the grid dependency of numerical solution for three dimensional turbulent flow field around a ship. In the present study a finite volume method with a modified sub-grid scale turbulence model and a numerically constructed non-orthogonal curvilinear coordinate system capable of conforming complex ship geometries are used. Numerical studies are then performed for a mathematical Wigley hull and the Series 60, $C_B=0.8$ hull forms. The results for various grid sizes are compared with each other and with measured data to show grid dependencies of numerical solutions.

  • PDF

Hierarchical structure parameters in three dimensional turbulence: She-Leveque model

  • Ahmad, Imtiaz;Hadj-Taieb, Lamjed;Hussain, Muzamal;Khadimallah, Mohamed A.;Taj, Muhammad;Alshoaibi, Adil
    • Smart Structures and Systems
    • /
    • v.29 no.5
    • /
    • pp.747-755
    • /
    • 2022
  • Hierarchical structure parameters, proposed in She-Leveque model, are investigated for velocity components obtained from different flow types over a large range of Reynolds numbers 255 < Re𝜆 < 720. The values of intermittency parameter 𝛽, with respect to a fixed velocity component, are observed nearly same for all four types of turbulence. The parameter 𝛾, for streamwise velocity components is nearly the same but significantly different for vertical components in different flows. It is also observed that for both parameters, an obvious relation between the longitudinal and transverse components 𝛽T < 𝛽L (and 𝛾T < 𝛾L) always holds. However, the difference between 𝛽L and 𝛽T is found very small in all types of turbulent flows, we studied here. It is evidenced that at low Reynolds numbers, the deviations from K41 scaling are mainly due to the most intense structures and slightly because of more heterogeneous hierarchy of fluctuation structures. However, at higher Reynolds numbers the deviations seem as a consequence of the most intense structures only. Over all, the study suggests that the hierarchy parameter 𝛽 may be consider as a universal constant.

An Experimental Study on the Mixing Flow Structure of Turbulent Cross Flow with Respect to the Ratio of Mass Flow Rate (난류충돌유동의 질량유량비에 따른 혼합유동구조에 관한 실험적 연구)

  • 이대옥;노병준
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.11
    • /
    • pp.2150-2158
    • /
    • 1992
  • This study was carried out to investigate the flow structure and mixing process of a cross mixing flow formed by two round jets with respect to the ratio of mass flow rate. This flow configuration is of great practical relevance in a variety of combustion systems, and the flow behaviour of a cross jet defends critically on the ratio of mass flow rate and the cross angle. The mass flow rate ratios of two different jets were controlled as 1.0, 0.8, 0.6, and 0.4, and the crossing angle of two round jets was fixed at 45 degree. The velocities issuing from jet nozzle with an exit diameter of 20mm were adjusted to 40m/s, 32m/s, 24m/s, and 16m/s, and the measurements have been conducted in the streamwise range of $1.1X_0$to $2.5X_0$ by an on-line measurement system consisted of a constant temperature type two channel hot-wire anemometry connected to a computer analyzing system. The original air flow was generated by a subsonic wind tunnel with reliable stabilities and uniform flows in the test section. For the analysis of the cross mixing flow structure in the downstream region after the cross point, the mean velocity profiles, the resultant velocity contours, and the three-dimensional profiles depending upon the mass flow rate ratio have been concentrately studied.

Numerical Analysis on the Turbulence Patterns in The Scour Hole at The Downstream of Bed Protection (하상보호공 직하류부 세굴공의 난류양상에 관한 수치해석적 연구)

  • Lee, Jaelyong;Park, Sung Won;Yeom, Seongil;Ahn, Jungkyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.20-26
    • /
    • 2019
  • Where hydraulic structures are to be installed over the entire width of a river or stream, usually a bed protection structure is to be installed. However, a local scour occurs in which the river bed downstream of the river protection system is eroded due to the influence of the upstream flow characteristics. This local scour is dominant in the flow and turbulence characteristics at the boundary of the flow direction and in the material of the bed materials, and may gradually become dangerous over time. Therefore, in this study, we compared the turbulence patterns in the local scour hole at the downstream of the river bed protection with the results of the analysis of the mobile bed experiment, and compared with the application of OpenFoam, a three dimensional numerical analysis model. The distribution of depth-averaged relative turbulence intensities along the flow direction was analyzed. In addition to this result, the stabilization of scour hole was compared with the bed shear stress and Shields parameter, and the results were compared by changing the initial turbulent flow conditions. From the results, it was confirmed that the maximum depth of generation of the three-stage was dominantly developed by the magnitude of depth-averaged relative turbulence intensity rather than the mean flow velocity. This result also suggests that design, construction or gate control are needed to control the depth-averaged relative turbulence intensities in order to reduce or prevent the local scour faults that may occur in the downstream part of the bed protection.

Numerical Study on Transfer Port Design for Scavenging Performance in Small Two-stroke Engines (소형 2행정 엔진의 전송 포트 형상에 따른 소기 성능에 대한 수치 해석적 연구)

  • Kim, Cheonghwan;Park, Sungho;Kim, Myeongkyu;Ahn, Eunsoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.6
    • /
    • pp.28-44
    • /
    • 2020
  • In this paper, the scavenging process of various transfer ports was evaluated to improve the performance of a small two-stroke engine for unmanned aerial vehicles. Three-dimensional computational fluid dynamics simulations were performed to four transfer ports for the evaluation, and a three-phase scavenging model was developed and applied to the simulation results for the quantitative comparison of scavenging performance. the short-circuit of fresh charge was restrained and an in-cylinder turbulent kinetic energy was enhanced by changing the transfer port. Also, a difference in the scavenging for each port were confirmed by applying the three-phase model to the simulation results.

A Comparative Study of 2-Dimensional Turbulence Models for Thermal Discharge (2차원 온배수 난류모형의 비교연구)

  • Choi, Hung-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.3
    • /
    • pp.225-235
    • /
    • 1999
  • For a comparative evaluation of three turbulence models in the analyses of thermal discharge behavior into a crossflow, a 2-dimemsional near-field numerical model is developed. The selected models are k-$\varepsilon$ and k-ι turbulence models as a 2-equation turbulence model and a 4-equation turbulence model in which the transport equations for mean of the temperature fluctuation squared and its dissipation rate for the consideration of buoyancy production and turbulent heat flux terms are added to a k-$\varepsilon$ turbulence model. The developed models are applied to a steady flow in an open channel with simple geometry and the numerical results agree with the existing experimental data. Numerical results of buoyancy induced gravitational lateral spreading by 4-equation turbulence model agree with the experimental data better than those of 2-quation turbulence models. The flow patterns by 4 and 2-equation turbulence models are similar.

  • PDF

Computational Fluid Dynamics(CFD) Simulation and in situ Experimental Validation for the Urea-Based Selective Non-Catalytic Reduction(SNCR) Process in a Municipal Incinerator (생활폐기물 소각장 2차 연소로에서 요소용액을 이용한 선택적무촉매환원 공정에 대한 전산유체역학 모사 및 현장 검증)

  • Kang, Tae-Ho;Nguyen, Thanh D.B.;Lim, Young-Il;Kim, Seong-Joon;Eom, Won-Hyeon;Yoo, Kyung-Seun
    • Korean Chemical Engineering Research
    • /
    • v.47 no.5
    • /
    • pp.630-638
    • /
    • 2009
  • A computational fluid dynamics(CFD) model is developed and validated with on-site experiments for a urea-based SNCR(selective non-catalytic reduction) process to reduce the nitrogen oxides($NO_x$) in a municipal incinerator. The three-dimensional turbulent reacting flow CFD model having a seven global reaction mechanism under the condition of low CO concentration and 12% excess air and droplet evaporation is used for fluid dynamics simulation of the SNCR process installed in the incinerator. In this SNCR process, urea solution and atomizing air were injected into the secondary combustor, using one front nozzle and two side nozzles. The exit temperature($980^{\circ}C$) of simulation has the same value as in situ experiment one. The $NO_x$ reduction efficiencies of 57% and 59% are obtained from the experiment and CFD simulation, respectively at NSR=1.8(normalized stoichiometric ratio) for the equal flow rate ratio from the three nozzles. It is observed in the CFD simulations with varying the flowrate ratio of the three nozzles that the injection of a two times larger front nozzle flowrate than the side nozzle flowrate produces 8% higher $NO_x$ reduction efficiency than the injection of the equal ratio flowrate in each nozzle.