• 제목/요약/키워드: Three Dimensional CT

검색결과 506건 처리시간 0.024초

Three-dimensional imaging modalities in endodontics

  • Mao, Teresa;Neelakantan, Prasanna
    • Imaging Science in Dentistry
    • /
    • 제44권3호
    • /
    • pp.177-183
    • /
    • 2014
  • Recent research in endodontics has highlighted the need for three-dimensional imaging in the clinical arena as well as in research. Three-dimensional imaging using computed tomography (CT) has been used in endodontics over the past decade. Three types of CT scans have been studied in endodontics, namely cone-beam CT, spiral CT, and peripheral quantitative CT. Contemporary endodontics places an emphasis on the use of cone-beam CT for an accurate diagnosis of parameters that cannot be visualized on a two-dimensional image. This review discusses the role of CT in endodontics, pertaining to its importance in the diagnosis of root canal anatomy, detection of periradicular lesions, diagnosis of trauma and resorption, presurgical assessment, and evaluation of the treatment outcome.

전산화단층상을 이용한 안면골의 3차원재구성상의 비교 연구 (COMPARATIVE STUDY OF THREE-DIMENSIONAL RECONSTRUCTIVE IMAGES OF FACIAL BONE USING COMPUTED TOMOGRAPHY)

  • 송남규;고광준
    • 치과방사선
    • /
    • 제22권2호
    • /
    • pp.283-290
    • /
    • 1992
  • The purpose of this study was to evaluate the spatial relationship of facial bone more accurately. For this study, the three-dimensional images of dry skull were reconstructed using computer image analysis system and three-dimensional reconstructive program involved CT. The obtained results were as follows: 1. Three-dimensional reconstructive CT results in images that have better resolution and more contrast 2. It showed good marginal images of anatomical structure on both three-dimensional CT and computer image analysis system, but the roof of orbit, the lacrimal bone and the squamous portion of temporal bone were hardly detectable. 3. The partial loss of image data were observed during the regeneration of saved image data on three-dimensional CT. 4. It saved the more time for reconstruction of three-dimensional images using computer image analysis system. But, the capacity of hardware was limited for inputting of image data and three-dimensional reconstructive process. 5. We could observe the spatial relationship between the region of interest and the surrounding structures by three-dimensional reconstructive images without invasive method.

  • PDF

삼차원 프린팅 기술을 이용한 전산화단층영상 품질 측정용 팬텀 제작 및 비교 연구 (A Study on the Fabrication and Comparison of the Phantom for Computed Tomography Image Quality Measurements Using Three-Dimensions Printing Technology)

  • 윤명성;홍순민;허영철;한동균
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제41권6호
    • /
    • pp.595-602
    • /
    • 2018
  • Quality control (QC) of Computed Tomography (CT) devices is based on image quality measurement on AAPM CT phantom which is a standard phantom. Although it is possible to control the accuracy of the CT apparatus, it is expensive and has a disadvantage of low penetration rate. Therefore, in this study, we make image quality measurement phantom at low cost using FFF (Fused Filament Fabrication) type three-dimensional printer and try to analyze the usefulness, compare it with existing standard phantom. To print a phantom, We used three-dimensional printer of the FFF system and PLA (Poly Lactic Acid, density: $1.24g/cm^3$) filament, and the CT device of 64 MDCT (Aquilion CX, Toshiba, Japan). In addition, we printed a phantom using three-dimensional printer after design using various tool based on existing standard phantom. For image quality evaluation, AAPM CT phantom and self-generated phantom were measured 10 times for each block. The measured data were analyzed for significance using the Mannwhiteney U-test of SPSS (Version 22.0, SPSS, Chicago, IL, USA). As a result of the analysis, phantom fabricated with three-dimensional printer and standard phantom showed no significant difference (p>0.05). Furthermore, we confirmed that image quality measurement performance of a phantom using three-dimensional printer is similar to the existing standard phantom. In conclusion, we confirmed the possibility of low cost phantom fabrication using three dimensional printer.

3차원 CT 영상을 이용한 두개악안면 분석을 위한 계측점의 제안 (A proposal of landmarks for craniofacial analysis using three-dimensional CT imaging)

  • 장혜숙;백형선
    • 대한치과교정학회지
    • /
    • 제32권5호
    • /
    • pp.313-325
    • /
    • 2002
  • 3차원 CT에서는 환자의 움직임에 의한 오차와 상의 확대나 왜곡을 감소시킨 실측치를 얻을 수 있으며 두개안면부의 입체적인 영상을 구성할 수 있고 원하는 조직이나 구조물의 관찰이 용이하다 디지털 영상 기술이 빠르게 발전하고 있고 치료의 범위가 더욱 넓어지면서 두개악안면 구조의 3차원적인 분석법의 개발은 시급한 과제가 되었다. 이에 본 연구에서는 Vworks 프로그램$^{TM}$ (Cybermed Inc., Seoul, Korea)과 건조두개골을 이용하여 3차원 CT 영상의 오차와 확대율을 평가하고Vmorph-proto프로그램 $^{TM}$ (Cybermed Inc., Seoul, Korea)을 이용하여 정상인과 비대칭 환자의 3차원 CT영상에서 지정이 용이하고 반복재현성이 높은 계측점을 설정하고자 하여 다음과 같은 결론을 얻었다 ; 1. 건조두개골의 실측치와 Vworks 프로그램을 이용하여 구성한 3차원 CT영상에서 의 계측치를 비교한 결과 평균오차가 0.99mm, 확대율이 1.04%로 나타났다. 2. 3차원 CT영상에서 경조직 계측점으로 Supraorbitale, Lateral orbital margin, Infraorbitale, Natron, ANS, A point, Zygomaticomaxilla, Upper incisor, Lower incisor, B point, Pogonion, Menton, PNS, Condylar inner margin, Condylar outer margin, Porion, Condylion, Gonionl, Gonion2, Gonion3, Sigmoid notch, Basion 등이 임상적으로 유용하다고 판단되었다. 3. 3차원 CT영상에서 연조직 계측점으로 Endocanthion, Exocanthion, Soft tissue Nasion, Pronasale, Alare lateralis, Upper nostril point, Lower nostril point, Subnasale, Upper lip point, Cheilion, Stomion, Lower lip center, Soft tissue B, Pogonion, Menton, Preaurale 등이 임상적으로 유용하다고 판단되었다. Vworks 프로그램으로 3차원 CT영상을 구성하고 계측하는 것이 임상적으로 유용하다고 판단되었다. 또한 위에서 제안된 연조직 및 경조직 계측점들은 3차원 CT영상에서 반복 재현성이 높고 지정이 용이하며 해부학적 특징을 나타내주는 점들로 두개악안면 구조의 3차원적인 진단과 술전, 술후의 예측과 비교에 유용하게 사용될 것으로 사료되는 바이다.

Multi-Detector Row CT를 이용한 중심부 기도 질환의 평가 (Multi-Detector Row CT of the Central Airway Disease)

  • 강은영
    • Tuberculosis and Respiratory Diseases
    • /
    • 제55권3호
    • /
    • pp.239-249
    • /
    • 2003
  • Multi-detector row CT (MDCT) provides faster speed, longer coverage in conjunction with thin slices, improved spatial resolution, and ability to produce high quality muliplanar and three-dimensional (3D) images. MDCT has revolutionized the non-invasive evaluation of the central airways. Simultaneous display of axial, multiplanar, and 3D images raises precision and accuracy of the radiologic diagnosis of central airway disease. This article introduces central airway imaging with MDCT emphasizing on the emerging role of multiplanar and 3D reconstruction.

안면 비대칭 환자의 하악골 수술 후 하악골 변화에 대한 3차원 CT 영상 비교 (Comparision of Mandible Changes on Three-Dimensional Computed Tomography image After Mandibular Surgery in Facial Asymmetry Patients)

  • 김미령;진병로
    • Journal of Yeungnam Medical Science
    • /
    • 제25권2호
    • /
    • pp.108-116
    • /
    • 2008
  • Background : When surgeons plan mandible ortho surgery for patients with skeletal class III facial asymmetry, they must be consider the exact method of surgery for correction of the facial asymmetry. Three-dimensional (3D) CT imaging is efficient in depicting specific structures in the craniofacial area. It reproduces actual measurements by minimizing errors from patient movement and allows for image magnification. Due to the rapid development of digital image technology and the expansion of treatment range, rapid progress has been made in the study of three-dimensional facial skeleton analysis. The purpose of this study was to conduct 3D CT image comparisons of mandible changes after mandibular surgery in facial asymmetry patients. Materials & methods : This study included 7 patients who underwent 3D CT before and after correction of facial asymmetry in the oral and maxillofacial surgery department of Yeungnam University Hospital between August 2002 and November 2005. Patients included 2 males and 5 females, with ages ranging from 16 years to 30 years (average 21.4 years). Frontal CT images were obtained before and after surgery, and changes in mandible angle and length were measured. Results : When we compared the measurements obtained before and after mandibular surgery in facial asymmetry patients, correction of facial asymmetry was identified on the "after" images. The mean difference between the right and left mandibular angles before mandibular surgery was $7^{\circ}$, whereas after mandibular surgery it was $1.5^{\circ}$. The right and left mandibular length ratios subtracted from 1 was 0.114 before mandibular surgery, while it was 0.036 after mandibular surgery. The differences were analyzed using the nonparametric test and the Wilcoxon signed ranks test (p<0.05). Conclusion: The system that has been developed produces an accurate three-dimensional representation of the skull, upon which individualized surgery of the skull and jaws is easily performed. The system also permits accurate measurement and monitoring of postsurgical changes to the face and jaws through reproducible and noninvasive means.

  • PDF

기관협착증에서 3차원적 영상 진단의 의의 (The Significance of 3-Dimensional Imaging in Tracheal Stenosis)

  • 정동학;봉정표;이운우;노정래;성기준
    • 대한기관식도과학회지
    • /
    • 제1권1호
    • /
    • pp.82-93
    • /
    • 1995
  • Three-dimensional reconstruction of computed tomographic image(3D CT) is a well-established imaging modality which has been investigated in various clinical settings. It is commonly performed in case of congenital or developmental abnormalities, and traumatic fracture of skull and face that requires reconstruction of osseous structure. However reporting the 3D CT in laryngeal or tracheal stenosis is rare and its results are obscure. The authors performed 3D CT in six cases of tracheal stenosis and found diagnostic value of 3D CT. A Comparision of diagnostic information obtained from plain X-ray, 2D CT and 3D CT has performed in total six cases of tracheal stenosis. Surgical treatment of the tracheal stenosis was following in these cases : tracheal end to end anastomosis In 1 case, laryngotracheal end to end anastomosis in 2 cases. 3D CT information was compared with operative finding. In two of six cases, satisfactory information was not obtained from 3D CT in evaluating an exact stenosis of trachea. Future, it will be helped in evaluating of tracheal stenosis by 3D CT.

  • PDF

The development of high fidelity Steam Generator three dimensional thermal hydraulic coupling code: STAF-CT

  • Zhao, Xiaohan;Wang, Mingjun;Wu, Ge;Zhang, Jing;Tian, Wenxi;Qiu, Suizheng;Su, G.H.
    • Nuclear Engineering and Technology
    • /
    • 제53권3호
    • /
    • pp.763-775
    • /
    • 2021
  • The thermal hydraulic performances of Steam Generator (SG) under both steady and transient operation conditions are of great importance for the safety and economy in nuclear power plants. In this paper, based on our self-developed SG thermal hydraulic analysis code STAF (Steam-generator Thermalhydraulic Analysis code based on Fluent), an improved new version STAF-CT (fully Coupling and Transient) is developed and introduced. Compared with original STAF, the new version code STAF-CT has two main functional improvements including "Transient" and "Fully Three Dimensional Coupling" features. In STAF-CT, a three dimensional energy transferring module is established which can achieve energy exchange computing function at the corresponding position between two sides of SG. The STAF-CT is validated against the international benchmark experiment data and the results show great agreement. Then the U-shaped SG in AP1000 nuclear power plant is modeled and simulated using STAF-CT. The results show that three dimensional flow fields in the primary side make significant effect on the energy source distribution between two sides. The development of code STAF-CT in this paper can provide an effective method for further SG high fidelity research in the nuclear reactor system.

계층적 모델에 의한 3차원 재구성 영상의 임의단면 표시 (Arbitrary Cross Sectional Display from Three-dimensional Reconstructed Image by Hierarchical Model)

  • 유선국;김선호
    • 대한의용생체공학회:의공학회지
    • /
    • 제10권2호
    • /
    • pp.157-164
    • /
    • 1989
  • Three-dimensional imaging and manipulation of CT data are becoming increasingly important for deterRing the complex structure and pathologies. Octree which is a hierarchical data model is used to reconstruct three- dimensional objects from CT scans. Orthogonal cross sections are displayed by traverse the octree partially. Arbitrary oblique planes are derived by intersecting the square region of plane and cubic volume of octal node. Thia method enables the display of multi-structured complex organ ann the realization by personal computer.

  • PDF

Difference in glenoid retroversion between two-dimensional axial computed tomography and three-dimensional reconstructed images

  • Kim, Hyungsuk;Yoo, Chang Hyun;Park, Soo Bin;Song, Hyun Seok
    • Clinics in Shoulder and Elbow
    • /
    • 제23권2호
    • /
    • pp.71-79
    • /
    • 2020
  • Background: The glenoid version of the shoulder joint correlates with the stability of the glenohumeral joint and the clinical results of total shoulder arthroplasty. We sought to analyze and compare the glenoid version measured by traditional axial two-dimensional (2D) computed tomography (CT) and three-dimensional (3D) reconstructed images at different levels. Methods: A total of 30 cases, including 15 male and 15 female patients, who underwent 3D shoulder CT imaging was randomly selected and matched by sex consecutively at one hospital. The angular difference between the scapular body axis and 2D CT slice axis was measured. The glenoid version was assessed at three levels (midpoint, upper one-third, and center of the lower circle of the glenoid) using Friedman's method in the axial plane with 2D CT images and at the same level of three different transverse planes using a 3D reconstructed image. Results: The mean difference between the scapular body axis on the 3D reconstructed image and the 2D CT slice axis was 38.4°. At the level of the midpoint of the glenoid, the measurements were 1.7°±4.9° on the 2D CT images and -1.8°±4.1° in the 3D reconstructed image. At the level of the center of the lower circle, the measurements were 2.7°±5.2° on the 2D CT images and -0.5°±4.8° in the 3D reconstructed image. A statistically significant difference was found between the 2D CT and 3D reconstructed images at all three levels. Conclusions: The glenoid version is measured differently between axial 2D CT and 3D reconstructed images at three levels. Use of 3D reconstructed imaging can provide a more accurate glenoid version profile relative to 2D CT. The glenoid version is measured differently at different levels.