• Title/Summary/Keyword: Thread Cutting Method

Search Result 9, Processing Time 0.022 seconds

Machining Characteristics of Ti-6Al-4V Thread (Ti-6Al-4V 티타늄 합금나사의 절삭 특성)

  • Kim, Hyung-Sun;Choi, Jong-Guen;Kim, Dong-Min;Lyu, Min-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.5
    • /
    • pp.514-520
    • /
    • 2009
  • Titanium is one of the most attractive materials due to their superior properties of high specific strength and excellent corrosion resistance. The applications in aerospace and medical industries demand machining process more frequently to obtain more precise products. Machining of titanium is faced with strong challenges such as increased component complexity i.e. airframe components manufacturing processes. The machining cost on titanium have traditionally demanded high cutting tool consumable cost and slow machining cycle times. Similarly, the high wear of the cutting tools restricts the cutting process capabilities. Titanium screws applied to fasten parts In the several corrosion environment. In the thread cutting of titanium alloys, the key point for successful work is to select proper cutting methods and tool materials. This study suggests a guidance fur selecting the cutting methods and the tool materials to improve thread quality and productivity. Some experiments investigate surface roughnesses, cutting forces and tool wear with change of various cutting parameters including tool materials, cutting methods, cutting speed. As the results, the P10 type insert tip was assured of the best for thread cutting of Ti-6Al-4V titanium alloy. Also the initial depth of infeed was desirable to use the value below 0.5mm as the uniform cutting area method is applied.

  • PDF

Study on Surface Roughness Characteristics of Cutting Thread Sensors (절사센서의 표면거칠기 특성에 관한 연구)

  • Son, Jae-Hwan;Lee, Ho-Young;Park, Chul-Woo;Roh, Joon-Ho;Han, Chang-Woo;Oh, Chang-Hwan;Seo, Min-Kyo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.10 no.4
    • /
    • pp.195-200
    • /
    • 2007
  • These days, various and complex threads are developed, so it is necessary to develop the cutting a thread sensors for checking a cut thread in severe environment and it is very important to evaluate the quality of the cutting a thread sensors. The analysis of variance(ANOVA) method is very useful method on the quality evaluation field. In this study, the quality is evaluated by one way layout ANOVA method with the surface roughness data. The experiment is carried out by 3 sensors and the result show that the sensors have the good quality in precision.

  • PDF

Double Enveloping Worm Thread Tooth Machining Study using Full Face Contact Cutting Tool (전체면 접촉 절삭공구를 이용한 장구형 웜나사 치형가공 연구)

  • Kang, S.J.;Kim, Y.H.
    • Transactions of Materials Processing
    • /
    • v.29 no.3
    • /
    • pp.144-150
    • /
    • 2020
  • In this paper, we propose the generation of a double enveloping worm thread profile with a non-developable ruled surface. Thread surface machining cuts all the way from the tip to the tooth root at one time, like full-face contact machining, rather than cutting several times like point machining. This cutting can reduce the cutting duration and achieve the smooth surface that does not require a grinding process for the threaded surface. The mathematical model of the cutting process was developed from theoretical equations, and the tooth surface was generated using two parameters and modeled in the CATIA using the generated Excel data. Additionally, the machining process of the worm was simulated in a numerical control simulation system. To verify the validity of the proposed method, the deviation between the modeling and the workpiece was measured using a 3D measuring machine.

Feed Directional Dynamic Characteristics of the Machine Tool System (공작기계 계 의 이송방향 동특성에 관한 연구)

  • 이종원;조영호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.7 no.1
    • /
    • pp.36-45
    • /
    • 1983
  • In order to characterize the machine tool feed-drive dynamics, thread cutting experiments are performed with cutting conditions and slide-way lubrication varied. During the experiments, the carriage, tool post and tail stock accelerations in the feed direction are measured, and analyzed by employing the spectral analysis method. It is found that the tool post vibration in the feed direction during thread cutting operation is mainly due to those of the carriage and the workpiece. Other structure-related vibrations show little effects on the tool post vibration. The characteristics of the carriage vibration is shown to be fairly consistent, except the vibration amplitude, regardless the variations in cutting condition and lubrication within the experimental range. The experimental results suggest that the feeddrive system can be modelled as a 2 DOF damped oscillatory system.

Study on Housed at Museum of Sun Am Temple (선암사 소장 <용문자수탁의(龍紋刺繡卓衣)> 연구)

  • Sim, Yeon-Ok
    • Journal of the Korean Society of Costume
    • /
    • v.67 no.2
    • /
    • pp.88-100
    • /
    • 2017
  • This study is for the textiles of at Sun Am Temple and characteristic of embroidery. Tak Ui was composed of orange body and green upper cover, and had no strings. The body plate was covered with embroidery, with Gauze base, and upper part was appliqued, by cutting dragon pattern, cloud pattern on satin damask. The thread for embroidery was silk floss, silk twisted thread, rapped gold thread, and rapped silk thread. For padding, it was used cotton thread in the part of dragon's scales. It was used satin stitch, outline stitch, split stitch, couching, and counted stitch, etc. as method of embroidery. In particular, it embroidered counted stitch of diamond shape consecutively on the whole of Tak Ui, it does so with counted stitch of same effect of weaving Brocade in the part of cloud. Besides, it is one of the characteristic for couching rapped silk thread. Such lead embroidery is the popular method in the Ming dynasty of China, in the 16~17 century. The design of Tak Ui is dragon, cloud, and wave in the theme. In the center, 'Seong-su-man-nyeon' was placed on the heads of dragon. This is similar to Dragon Robe of Four-petalled medallion patterns, period of Ming dynasty in China. Therefore, it confirmed that Tak Ui was remodeled the embroidered textiles, made for royal robe, originally, with Tak Ui at temple.

Analysis of Tooth Profile Accuracy of Enveloping Worm Thread Depending on End Mill Tool Shape (장구형 웜 나사의 절삭 엔드밀 공구 형상에 따른 치형 정밀도 분석)

  • Kang, S.J.;Kim, Y.H.
    • Transactions of Materials Processing
    • /
    • v.28 no.4
    • /
    • pp.183-189
    • /
    • 2019
  • Cylindrical worm reducers are generally used in various fields and forms throughout the industry, and demand is increasing due to their role as an integral part of the industry. Market trends require high-load, high-precision components, and small-sized reducers with large loads. When using a cylindrical worm reducer, a reducer designed with a reduced center distance while maintaining the same output torque results in gear wear. To overcome this difficulty, an enveloping worm gear reducer is introduced and studied. In this paper, three types of end mill tools are used to evaluate the tooth profile accuracy for each tool shape during machining of the tooth profile for a non-developed surface worm thread. The effect of the endmill shape on the accuracy of the tooth profile was analyzed by performing 3D modeling of the surrounding worm tooth profile based on the Hindley method. In this study, we analyzed tooth profile accuracy, tooth surface roughness, and tooth surface machining time, etc. Through the study, efficient machining conditions for the enveloping worm gears and the influence of parameters on the process were presented.

Redoable Tie-Over Dressing Using Multiple Loop Silk Threads

  • Jo, Hyeon Jong;Kim, Jun Sik;Kim, Nam Gyun;Lee, Kyung Suk;Choi, Jae Hoon
    • Archives of Plastic Surgery
    • /
    • v.40 no.3
    • /
    • pp.259-262
    • /
    • 2013
  • After skin grafting, to prevent hematoma or seroma collection at the graft site, a tie-over dressing has been commonly used. However, although the conventional tie-over dressing by suture is a useful method for securing a graft site, refixation is difficult when repeated tie-over dressing is needed. Therefore, we recommend a redoable tie-over dressing technique with multiple loops threads and connecting silk threads. After the raw surface of each of our cases was covered with a skin graft, multiple loop silk thread attached with nylon at the skin graft margin. We applied the ointment gauze and wet cotton/fluffy gauze over the skin graft, then fixed the dressing by connecting cross-counter multiple loop thread with connecting silk threads. When we opened the tie-over dressing by cutting the connecting silk threads, we repeated the tie-over dressing with the same method. The skin graft was taken successfully without hematoma or seroma collection or any other complications. In conclusion, we report a novel tie-over dressing enabling simple fixation of the dressing to maintain proper tension for wounds that require repetitive fixation. Further, with this reliable method, the skin grafts were well taken.

Finite element analysis of cortical bone strain induced by self-drilling placement of orthodontic microimplant (Self-drilling 방식의 마이크로임플란트 식립에 의해 발생하는 피질골 스트레인의 유한요소해석)

  • Park, Jin-Seo;Yu, Won-Jae;Kyung, Hee-Moon;Kwon, Oh-Won
    • The korean journal of orthodontics
    • /
    • v.39 no.4
    • /
    • pp.203-212
    • /
    • 2009
  • Objective: The aim of this study was to evaluate the strain induced in the cortical bone surrounding an orthodontic microimplant during insertion in a self-drilling manner. Methods: A 3D finite element method was used to simulate the insertion of a microimplant (AbsoAnchor SH1312-7, Dentos Co., Daegu, Korea) into 1 mm thick cortical bone. The shape and dimension of thread groove in the center of the cortical bone produced by the cutting flute at the apical of the microimplant was obtained from animal test using rabbit tibias. A total of 3,600 analysis steps was used to calculate the 10 turns and 5 mm advancement of the microimplant. A series of remesh in the cortical bone was allowed to accommodate the change in the geometry accompanied by the implant insertion. Results: Bone strains of well higher than 4,000 microstrain, the reported upper limit for normal bone remodeling, were observed in the peri-implant bone along the whole length of the microimplant. Level of strains in the vicinity of either the screw tip or the valley part were similar. Conclusions: Bone strains from a microimplant insertion in a self-drilling manner might have a negative impact on the physiological remodeling of cortical bone.