• Title/Summary/Keyword: Thornthwaite 방법

Search Result 11, Processing Time 0.033 seconds

Evaluation of Drought Index Based on the Calculation of Potential Evapotranspiration (잠재증발산량 계산에 따른 가뭄지수 평가)

  • Kidoo Park;Innkyo Choo;Beomgu Kim;Shiksha Bastola;Seungjin Maeng;Beomseok Kim;Younghun Jung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.25 no.11
    • /
    • pp.33-43
    • /
    • 2024
  • In this study, data from the Gwangyang Automated Synoptic Observing System (ASOS) meteorological observatory were utilized for drought assessment. Drought occurrence days were evaluated using the Precipitation-based Standardized Precipitation Index (SPI) and two types of Standardized Precipitation Evapotranspiration Index (SPEI) (SPEI_Thornthwaite and SPEI_Penman-Monteith), considering precipitation and evapotranspiration. The SPI and SPEIs yielded generally similar quantitative results for drought occurrence days. However, the SPEI_Penman-Monteith, which uses the physically-based Penman-Monteith method for evapotranspiration estimation, showed a higher number of drought days compared to the SPI_Thornthwaite. The amount of evapotranspiration by the Penman-Monteith method had high seasonal variability and high moisture loss, while the amount of evapotranspiration by the Thornthwaite method had low variability and low moisture loss. Consequently, the SPEI_Thornthwaite had a higher correlation with the SPI compared to the SPEI_Penman-Monteith. Since the SPEI_Penman-Monteith index can more accurately calculate the amount of water loss caused by the hydrological circulation, more reasonable results are derived in calculating the number of drought occurrence days. However, due to the lack of sufficient high-quality meteorological data at ASOS observatories, the Penman-Monteith method may be difficult to apply. In such cases, the SPEI_Thornthwaite, estimating evapotranspiration based solely on monthly average temperature, can be used as an alternative.

Evaluation of improvement effect on the spatial-temporal correction of several reference evapotranspiration methods (기준증발산량 산정방법들의 시공간적 보정에 대한 개선효과 평가)

  • Kim, Chul-Gyum;Lee, Jeongwoo;Lee, Jeong Eun;Kim, Hyeonjun
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.9
    • /
    • pp.701-715
    • /
    • 2020
  • This study compared several reference evapotranspiration estimated using eight methods such as FAO-56 Penman-Monteith (FAO PM), Hamon, Hansen, Hargreaves-Samani, Jensen-Haise, Makkink, Priestley-Taylor, and Thornthwaite. In addition, by analyzing the monthly deviations of the results by the FAO PM and the remaining seven methods, monthly optimized correction coefficients were derived and the improvement effect was evaluated. These methods were applied to 73 automated synoptic observation system (ASOS) stations of the Korea Meteorological Administration, where the climatological data are available at least 20 years. As a result of evaluating the reference evapotranspiration by applying the default coefficients of each method, a large fluctuation happened depending on the method, and the Hansen method was relatively similar to FAO PM. However, the Hamon and Jensen-Haise methods showed more large values than other methods in summer, and the deviation from FAO PM method was also large significantly. When comparing based on the region, the comparison with FAO PM method provided that the reference evapotranspiration estimated by other methods was overestimated in most regions except for eastern coastal areas. Based on the deviation from the FAO PM method, the monthly correction coefficients were derived for each station. The monthly deviation average that ranged from -46 mm to +88 mm before correction was improved to -11 mm to +1 mm after correction, and the annual average deviation was also significantly reduced by correction from -393 mm to +354 mm (before correction) to -33 mm to +9 mm (after correction). In particular, Hamon, Hargreaves-Samani, and Thornthwaite methods using only temperature data also produced results that were not significantly different from FAO PM after correction. It can be also useful for forecasting long-term reference evapotranspiration using temperature data in climate change scenarios or predicting evapotranspiration using monthly or seasonal temperature forecasted values.

Model Development for Analysis of Nitrate Leaching and Its Field Application in a Rural Area (농촌지역의 질산성질소 거동 해석을 위한 모델 개발 및 현장 적용)

  • Suk, Hee-Jun;Chon, Chul-Min
    • Economic and Environmental Geology
    • /
    • v.42 no.6
    • /
    • pp.561-574
    • /
    • 2009
  • Unsaturated/saturated groundwater flow and solute transport model, VSFRT2D(Variable Saturated Flow and Reactive Transport model) was developed considering effects of pumping, irrigation, and denitrification. VSFRT2D employed Richards equation as governing equation for groundwater flow and previously existing unsaturated models modified by including computational procedure of evapotranspiration at surface using Thornthwaite method when precipitation doesn't occur. Bioremediation processes based on monod kinetics are described using four nonlinear contaminant transport equations and three nonlinear microbes transport equations. The developed model was applied to field data in Hongsung area contaminated with nitrate. In order to identify the effect of precipitation, pumping, evapotranspiration, irrigation, fertilizer application, and various bioremediations on groundwater flow and contaminant transport, individual processes were separated and simulated. Then all results obtained from the individual processes are compared with each other. The simulation results show that bioremediation had a negligible effect on nitrate concentration change. However, pumping for irrigation, precipitation, and nitrogen fertilizer application showed profound influences on nitrate concentration change.

Estimation of Groundwater Recharge in Junggwae-Boeun Area in Ulsan City Using the Water Balance and Hydrogeological Analyses (물수지 및 수리지질 분석을 통한 울산광역시 중괘천-보은천 지역의 지하수 함양량 산정)

  • An, Jeong-Hoon;Hamm, Se-Yeong;Lee, Jeong-Hwan;Kim, Nam-Hoon;Yang, Dae-Bok;Hwang, Jee-Gwang
    • Economic and Environmental Geology
    • /
    • v.41 no.4
    • /
    • pp.427-442
    • /
    • 2008
  • Estimation of groundwater recharge is one of the most critical issues in sustainable management of groundwater resources. This study estimated groundwater recharge in the Junggwae-Boeun area in Ulsan City, by using the water balance and hydrogeological characteristics of geology and soil. Evapotranspiration was computed by using the Thornthwaite method, and direct runoff was determined by using the SCS-CN technique. Groundwater recharge was obtained as 266 mm/a (20.6% of the average annual precipitation, 1296 mm/a), with 779 mm/a (60.1%) of evapotranspiration and 119 mm/a (9.2%) of direct runoff. Precipitation and groundwater recharge was highly correlated, comparing with the relationships between precipitation and evapotranspiration, and between precipitation and direct runoff. This fact indicates that groundwater recharge responds more sensitively to precipitation than evapotranspiration and direct runoff do.

Estimation and comparison of reference evapotranspiration in the Han River basin by several methods (증발산량 산정방법에 따른 한강유역의 기준증발산량 산정 및 비교)

  • Kim, Chul-Gyum;Lee, Jeongwoo;Lee, Jeong Eun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.259-259
    • /
    • 2020
  • 증발산량은 수문학적으로는 강수량으로부터 지표 유출량과 지하수 함양량을 추정하는 등 전체 물수지를 해석하는데 있어서 매우 중요하며, 농업적 측면에서는 작물의 용수 수요량을 결정하는 중요한 인자이다. 그러나 증발산량의 직접적인 계측이 쉽지 않기 때문에 물수지 방법에 의한 간접적인 추정이나 관련된 기상자료를 이용한 경험적이고 물리적인 해석을 통해 산정하고 있다. 일반적으로 특정조건의 작물(기준작물)을 기준으로 가용수분이 충분한 상태에서 주어진 기상조건에 대해 기준증발산량을 산정하며, 여기에 대상작물별 특성이나 토양의 실제수분상태 등을 고려하여 실제증발산량을 추정하고 있다. 본 연구에서는 한강권역을 대상으로 현재 가장 일반적으로 활용되고 있는 Penman-Monteith 방법을 비롯하여, Thornthwaite 방법, Hamon 방법, Priestly-Taylor 방법, Hargreaves-Samani 방법, Hansen 방법 등 총 6종의 기준증발산량을 산정하여 비교하였다. 각 방법에 필요한 기상자료는 한강권역 및 인근에 위치한 기상청 관할의 33개 ASOS 지점에 대한 60년간(1960~2019년)의 관측자료를 이용하였다. Penman-Monteith 방법에 의한 값을 기준으로 나머지 5가지 방법들에 의한 결과를 분석한 결과, 전반적으로 다른 방법들이 기준증발산량을 크게 산정하는 것으로 나타났으며, temperature-based 접근법인 Hamon과 Hargreaves-Samani에 의한 연평균 값은 Penman-Monteith 방법 대비 각각 28.5%, 19.3% 정도 크게 산정되었다. 특히 Hamon 방법에 의한 결과는 다른 방법과 비교하여 여름철에 크게 차이를 보였다. 반면 Hansen 방법은 상대적으로 Penmna-Monteith 방법과 가장 적은 편차를 나타내었다. 지역별로 분석했을 때는 서울/인천지역과 강원도 동해안 지역을 제외하고는 Penman-Monteith 방법 대비 다른 방법들의 기준증발산량이 큰 것으로 나타났다. 중권역별로는 Penman-Monteith 결과와 비교하여 -158 mm/yr 에서 최대 +307 mm/yr 정도의 편차를 나타내었으며, 월별로는 -13 mm에서 +73 mm의 편차가 나타났다.

  • PDF

Estimation of Groundwater Storage Change and Its Relationship with Geology in Eonyang Area, Ulsan Megacity (울산광역시 언양지역의 지하수 저류 변화량 산정 및 지질과의 관련성)

  • Kim, Nam-Hoon;Hamm, Se-Yeong;Kim, Tae-Yong;Cheong, Jae-Yeol;An, Jeong-Hoon;Jeon, Hang-Tak;Kim, Hyoung-Soo
    • The Journal of Engineering Geology
    • /
    • v.18 no.3
    • /
    • pp.263-276
    • /
    • 2008
  • In diverse hydrogeologic fields, estimation of groundwater storage change is one of the most critical issues. Accurate estimation methods for determining groundwater storage change are required more and more. For Yeonyang area of Ulsan Megacity, groundwater storage change was estimated by using water balance method and hydrogeological analyses. The estimates of groundwater storage change was 240 mm corresponding to 18.7% of mean annual precipitation. Direct runoff was calculated as 137 mm (10.6% of mean annual precipitation) by using SCS-CN method. Evapotranspiration based on the Thornthwaite method was calculated as 776 mm (60.5% of mean annual precipitation). Hydraulic properties of the soil types do not show any distinct relation with hydraulic conductivity of the rocks. This fact suggests that hydraulic property on the surface is different from that of subsurface geology. According to multi-linear regression analysis between groundwater storage change and hydraulic parameters, a regression equation of groundwater storage change, which was explained by precipitation and evapotranspiration, was established.

Future climate change of Jeju Island according to SSP scenarios (SSP 시나리오에 따른 제주도 지역의 미래 기후변화 전망)

  • Kim, Chul-Gyum;Cho, Jaepil;Chung, Il-Moon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.414-414
    • /
    • 2022
  • 본 연구는 2022년도 "제주특별자치도 수자원 부존현황 조사 및 분석 사업"의 연구비 지원에 의해수행되었습니다.최근 IPCC 제6차 평가보고서(AR6)에 새롭게 적용된 미래 기후변화 시나리오인 SSP (Shared Socioeconomic Pathways)에 따른 제주도 지역의 미래 기후변화를 강수량, 기온, 기준증발산 등을 중심으로 분석하였다. 미래의 기후변화 자료로서 19개의 GCM 모형으로부터 도출된 4개의 SSP 시나리오(SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5)를 활용하였다. 제주도 지역의 3개 기상청 ASOS 지점(제주, 성산, 서귀포)을 대상으로 상세화된 기후변화 자료를 이용하여 지점별 및 지역별 미래 전망을 분석하였다. 기준증발산량은 기온자료만을 이용하는 Thornthwaite 방법을 활용하여 산정하였으며, FAO-56 Penman-Monteith 기준증발산량과의 차이를 최소화하기 위하여 시공간적 보정계수를 적용하였다. 과거기간(1985~2014년)을 기준으로, 미래기간(2021~2095년)을 3개 구간(2021~2045년, 2046~2070년, 2071~2095년)으로 나누어 분석하였다. 제주도 전체에 대한 평균적인 전망은 대부분의 SSP 시나리오에서 강수량, 기온, 기준증발산량 모두 미래 후반기로 갈수록 점차 증가하는 경향을 보였으며, SSP1-2.6 시나리오에서만 기온과 기준증발산량이 미래 전반기(2021~2045년)에는 크게 증가하다가 중반기(2046~2070년)와 후반기(2071~2095년)에는 비교적 일정한 것으로 전망되었다. 과거기간과 비교하여 미래 후반기 SSP5-8.5 시나리오에서 가장 크게 증가하는 것으로 전망되었으며, 강수량은 17%, 기온은 38%, 기준증발산량은 58%까지 증가하는 것으로 분석되었다. 지점별로는 제주 지점이 다른 2개 지점(성산, 서귀포)에서보다 더 많이 증가할 것으로 전망되었다. 제주 지점의 경우 SSP5-8.5 시나리오에서 연 강수량은 19%, 평균기온은 42%, 기준증발산량은 70%까지 증가하는 것으로 나타났다. 증가되는 크기는 강수량은 서귀포, 성산, 제주 지점 순으로 전망되었으며, 기온과 기준증발산량은 반대로 제주, 성산, 서귀포 순으로 증가량이 클 것으로 전망되었다. 그러나 GCM 모형에 따라 전망결과가 다양하게 나타나기 때문에 이에 대한 불확실성을 고려한 미래 대응이 필요하다.

  • PDF

Meteorological Element and Vegetative Structure for Sorbus commixta Hedl. Natural Populations at Ulleung Island (울릉도 마가목 천연집단의 기상인자 추정 및 식생구조)

  • 김세현;장용석;정헌관;최영철
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.5 no.3
    • /
    • pp.158-165
    • /
    • 2003
  • This study was conducted to reveal the role of meteorological elements on the habitat characteristics and vegetative structure for S. commixta natural populations at Ulleung Island. Potential Evapotranspiration(PET) by elevation of Ulleung Island was estimated using Thornthwaite's climatology estimating method. Also, Warm Index (WI), Coldness Index (CI) and vegetative composition by elevation were determined. The following results were obtained: The S. commixta trees wire mainly distributed from an elevation of 300 m to 900 m. The WI and CI were about 66.8∼95.0, -21.5∼-7.7, respectively. Water deficit by precipitation and Potential Evapotranspiration (PET) mainly occurred from March to October at all elevations. But wafer deficits diminished with increased elevation. The apparent species in S. commixta natural populations at Ulleung Island were: 10 tree layer species, 17 subtree layer species, and 25 species in the shrub layer. In the tree layer, S. commixta was dominant with the highest value of 46.85, then Fagus crenate 13.43, Acer mono and Tilia amurensis 12.41 and 12.03, respectively. In the subtree layer, A. mono was dominant with the highest value of 13.16, then F. crenata 12.68, Acer pseudo-sieboldianum and S. commixta 11.37 and 10.76, respectively. Dominant species and IV values in the shrub layer were Sasa borealis (22.09) and Rhododendron brachycarpum (10.51). The S. commixta natural forests were in a relatively stable rendition because of the even distribution of its various indexes: the species diversity index of Shannon, the evenness index and dominance were 0.6199∼1.1390, 0.6199∼0.8825 and 0.1852∼0.3801, respectively.

Poential evapotranspiration analysis of suweon area (수원지방(水原地方)의 증발산량(蒸發散量) 분석(分析))

  • Shin, Yong Hwa;Hwang, Gye Seon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.9 no.1
    • /
    • pp.47-55
    • /
    • 1976
  • This study is conducted to find out potential evapotranspiration values computed by a reasonable formula which is well suited among the existing ones for Suweon area. Each formula based on the data from Suweon Agricultural Meteorological Station during 1964 to 1973. Five formulas which are Blanney-Criddle, Thornthwaite, Penman, Jensen-Haise and Truc have been applied for calculation of potential evapotanspiration. Results obtained are summarized as follows. 1. Potential evapotranspiration of Suweon area shows uni-modal distribution which maximum value occurs in summer and minimum value occurs in winter. Annual potential evapotranspiration computed by Blanney-Criddle formula is 1,377 mm and that computed by others ranges from 714mm to 896mm. 2. Potential evapotranspiration computed by Blanney-Criddle formula is higher value than that computed by others, and among the other formulas it's values show little differences. However, relationships between the former and the mean of four others is highly correlated. 3. In comparison with potential evapotranspiration computed by formulas and actual evapotranspiration for rice paddy which is already reported, value for crop coefficient may be 0.8 in local varities, 1.0 in Tongil varity on Blanney-Criddle formula, and 1.2 in local varities and 1.5 in Tongil varity on the mean of four other fomulas. 4. Five formulas may applied for calculation of potential evapotranspiration because of relatively good correlation among them. However Blanney-Criddle formula is one of recommendable ones, because it is easy to compute and requires less data in compare with other formulas.

  • PDF