• Title/Summary/Keyword: Thiobacillus sp. IW

Search Result 18, Processing Time 0.022 seconds

The Immobilization Characteristics of Thiobacillus sp. IW (Thiobacillus sp. IW의 고정화특성에 관한 연구)

  • 김성미;오광중김동욱
    • KSBB Journal
    • /
    • v.11 no.6
    • /
    • pp.649-653
    • /
    • 1996
  • Imnmobilization characteristics of Thiobacillus sp. IW which oxidizes sulfur compound was studied to use the bacterium in odor controlling equipment for the future. The optimum growth conditions for Thiobacillus sp. IW were pH7, $30^{\circ}C$ and the generation time was 38min, which was extremely fast compared with other sulfur oxidizing bacteria. Optimum growth conditions in activated carbon as a carrier was pH5, $35^{\circ}C$ and those in bioceramics was pH 7∼8, $35^{\circ}C$. Cell growth immobilized in bioceramics was more stable in pH, temperature change than that immobilized in activated carbon and total number of cells in bioceramics were also higher. Based on these results, the bioceramics is thought to be better carrier in immobilization of Thiobacillus sp. IW.

  • PDF

Simultaneous Removal of Hydrogen Sulfide and Ammonia Using Thiobacillus sp. IW in a Three-Phase Fluidized-Bed Bioreactor

  • Kum, Sung-Hoon;Oh, Kwang-Joong;Moon, Jong-Hae;Kim, Dong-Uk
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.3
    • /
    • pp.419-422
    • /
    • 2000
  • A three-phase fluidized-bed bioreactor including Thiobacillus sp. IW was tested to remove H_2S and $NH_3$ simultaneously. The inlet $H_2S$ was oxidized to $SO_4^{2-}$ by Thiobacillus sp. IW, and the $NH_3$ reacted with the $SO_4^{2-}$ to form $(NH_4)_2SO_4$. The removal efficiency of $H_2S$ was 98.4-99.9% for an inlet concentration of 36-730 ppm and that of $NH_3$ was 60.2-99.2% for an inlet concentration of 45-412 ppm. The removal efficiency of $NH_3$ was reduced when the inlet loading rate of $NH_3$ was increased above 10 mg/l/h. When the bioreactor was operated for 25 days with a lower inlet concentration of $NH_3$ compared with the of $H_2S$, the bioreactor exhibited an excellent performance with a stable pH, dissolved oxygen content, and cell concentration.

  • PDF

Optimization of Mutant Strain of the Sulfur-Oxidizing Bacteria, Thiobacillus sp. UIW-6 (황산화 세균 Thiobacillus sp. UIW-6 변이주의 성장 최적화)

  • Shin, Seung-Yong;Kang, Sun-Chul
    • Korean Journal of Environmental Agriculture
    • /
    • v.25 no.2
    • /
    • pp.124-128
    • /
    • 2006
  • To reducing offensive odor form compost UIW-6 mutant obtained by UV treatment from sulfur-oxidizing bacteria, Thiobacillus sp. IW. The UIW-6 mutant was found 1.6 times faster in growth than the parent strain on thiosulfate medium (TM) at 36 h after incubation. Initial pH, temperature and agitation for the optimum growth of UIW-6 were 6.5, $35^{\circ}C$ and 200 rpm, respectively. The UIW-6 mutant growth was two times higher than parent strain at 6 h culture in TM liquid medium containing 50 mM sodium thiosulfate. The UIW-6 mutant used fructose and sucrose as carbon sources and yeast extract> tryptone> peptone as nitrogen ones. It was found that the growth of UIW-6 was increased in addition of 0.2% yeast extract.

Effects of Cultivation Condition on Growth of the Hydrogen Sulfide-Degradating Thiobacillus sp. IW. Isolated from Waste Coal Mine Water (폐탄광수에서 분리한 황화수소 분해 세균 Thiobacillus sp. IW.의 성장조건)

  • 차진명;박열이인화
    • KSBB Journal
    • /
    • v.9 no.3
    • /
    • pp.287-293
    • /
    • 1994
  • A bacterium isolated from waste coal mine water around Hawsun had an ability for the degradation of hydrogen sulfide. The isolate was identified as Thiobacillus sp. IW. on the basis of its morphological, physiological and chemotaxonomical characteristics. The optimum pH and temperature were 7 and $30^{\circ}C$, respectively. Growth occurred in a pH range of 3 to 9. Due to the sulfate accumulated in liquid medium, the pH decreased. As a consequence the cell growth was inhibited. Potasium nitrate and glutamic acid were utilized as a nitrogen source but urea and ammonium chloride not consumed. Denitrification occurred in a basal medium containing the glucose but did not in a basal medium containing the malate. The maximum specific growth rate of cell was 0.78h-1 and generation time was 0.9 hour. The cell productivity was 6.25mg/1$.$h and the isolate grew logarithmically up to 18 hour. These results indicate that the isolate can be a suitable bacterium responsible for degradation of hydrogen sulfide as malodorous compounds.

  • PDF

Isolation and Characterization of a New Hydrogen Sulfide-Oxidizing Bacterium Thiobacillus Sp. (황화수소 산화세균인 새로운 Thiobacillus sp.의 분리 및 특성)

  • Cha, Jin-Myeong;Lee, In-Hwa
    • Korean Journal of Microbiology
    • /
    • v.32 no.4
    • /
    • pp.252-257
    • /
    • 1994
  • A new hydrogen sulfide-oxidation bacterium, Thiobacillus sp. was isolated from waste coal mine water around Hawsun in Chunnam province. The isolate was motile gram-negative rod shape, formed spore and grew up to be aerobically facultative chemolithotroph by using energy released from the oxidation of reduced inorganic sulfur compounds. It could assimilate various kinds of organic compounds and grew well upon thiosulfate-supplemented basal medium. To the lelvel of 32 mM in thiosulfate concentration, thiosulfate in itself was utilized as energy source for growth. However, from those of the higher concentration than 32 mM, thiosulfate functioned specifically as the substrate inhibitor rather than as the energy source. It was found that the optimum thiosulfate concentration for growth was 32 mM. The G+C content of the DNA was 65.0 mol%. The isolate had 16 : 1 + 17$_{cyc}$, 16 : 0 as their major non-hydroxylated cellular fatty acids, 3-OH 12 : 0 as a hydroxylated fatty acid and also contained unidentified $C_{18}$ branched fatty acid. The ubiquinone system in the respiratory chain was Q-9. Based on the physiological and biochemical characteristics, the isolate was assigned to a novel species of the genus Thiobacillus sp. iw.

  • PDF

3상 생물막유동층반응기를 이용한 황화수소와 암모니아의 동시제거

  • Park, Jin-Su;Mun, Jong-Hye;Kim, Jong-U;Kim, Dong-Uk;O, Gwang-Jung
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.339-342
    • /
    • 2000
  • A three phase fluidized bed bioreactor including Thiobacillus sp.IW was used to remove hydrogen sulfide and ammonia simultaneously. In this study, hydrogen sulfide was oxidized to sulfate by the microorganism and ammonia was reacted with the sulfate to form ammonium sulfate. Removal efficiency of hydrogen sulfide was almost perfect up to 45 mg/l h of inlet loading rate, whereas that of ammonia was reduced as inlet loading rate increased from 10 mg/1 h.

  • PDF

Biofilter를 이용한 천연피혁제조공장의 악취성분제거

  • Kim, Jong-U;Mun, Jong-Hye;Park, Jin-Su;O, Gwang-Jung;Kim, Dong-Uk
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.163-166
    • /
    • 2000
  • Hydrogen sulfide, ammonia and benzene which are generated from natural leather industry were simultaneously removed using biofilter including benzene degrading microbial consortia and sulfur oxidizer Thiobacillus sp.IW. The removal efficiency of benzene was maintained 90% in average for single and mixed gas treatment and that of ammonia was 99%, whereas at of hydrogen sulfide was relatively lower 85%.

  • PDF

Development and culture optimization of mutants of Thiobacillus sp. IW for elimination of hydrogen sulfide

  • Kang, Sun-Chul;Lim, Kwang-Hee;Shin, Seung-Yong
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.465-467
    • /
    • 2005
  • UIW-10 mutant obtained by UV treatment using sulfur-oxidizing bacteria, Thiobacillus sp. IW was studied. The colony size of UIW-10 was found 2 $^{\sim}$ 3 times bigger in diameter than the parent colony on TAM medium. UIW-10 mutant growth was two times higher than parent strain at 6 h culture in liquid medium containing sulfides such as sulfur and sodium thiosulfate. Initial pH and temperature for the optimum growth of UIW-10 were 6.0 and $35-40^{\circ}C$, respectively. It was found that addition of 0.5% yeast extract and 0.5 to 2.0% tryptone as nitrogen sources and the constant agitation at 150 to 200 rpm had a positive effect and the growth of UIW-10 was increased.

  • PDF

Semi-pilot Scaled Biofilter Treatment of Malodorous Waste Air Containing Hydrogen Sulfide and Ammonia: 1. Performance of Biofilter Packed with Media with Immobilized Thiobacillus sp. IW and Return-sludge (황화수소와 암모니아를 함유한 악취폐가스의 세미파일럿 규모 바이오필터 처리: 1. Thiobacillus sp. IW 및 반송슬러지를 고정한 담체를 충전한 바이오필터 운전)

  • Lee, Eun Ju;Park, Hyeri;Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.51 no.5
    • /
    • pp.568-574
    • /
    • 2013
  • A semi-pilot biofilter packed with media with immobilized Thiobacillus sp. IW and return sludge, was operated under various operating conditions in order to treat malodorous waste air containing both hydrogen sulfide and ammonia which are major air pollutants emitted from composting factories and many publicly owned treatment works (POTW). At the incipient and middle stages of a semi-pilot biofilter operation, the hydrogen sulfide-removal efficiency behaves regardless of an inlet-load of ammonia. However, the ammonia-removal efficiency decreased as an inlet-load of hydrogen sulfide increased. Nevertheless, at the final stage of the semi-pilot biofilter operation, the ammonia-removal efficiency was not affected by the increase of hydrogen sulfide-inlet load. It is attributed to that a serious acidification of semi-pilot biofilter-media did not occur due to continuous injection of buffer solution at the final stage of the semi-pilot biofilter operation. When both hydrogen sulfide and ammonia contained in malodorous waste air were treated simultaneously by semi-pilot biofilter, the maximum elimination capacities of hydrogen sulfide and ammonia turned out to be ca. 58 and $30g/m^3/h$, respectively. These maximum elimination capacities were estimated to be ca. 39 and 46% less than those for lab-scaled biofilter-separate elimination of hydrogen sulfide and ammonia, respectively. Thus, for the simultaneous biofilter-treatment of hydrogen sulfide and ammonia, the maximum elimination capacity of ammonia decreased by 7% more than that of hydrogen sulfide.

Semi-pilot Scaled Biofilter Treatment of Malodorous Waste Air Containing Hydrogen Sulfide and Ammonia: 2. Performance of Biofilter Packed with Media Inoculated with a Consortium of Separated Microbes (황화수소와 암모니아를 함유한 악취폐가스의 세미파일럿 규모 바이오필터 처리: 2. 분리 미생물들을 접종한 담체를 충전한 바이오필터 운전)

  • Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.52 no.2
    • /
    • pp.240-246
    • /
    • 2014
  • A semi-pilot biofilter inoculated with the microbes consortium of Bacillus cereus DAH-1056 and Arthrobacter sp. KDE-0311 was operated under various operating conditions in order to treat malodorous waste air containing both hydrogen sulfide and ammonia. When both hydrogen sulfide and ammonia contained in malodorous waste air were treated simultaneously by semi-pilot biofilter inoculated with Thiobacillus sp. IW and return-sludge, the removal efficiencies of hydrogen sulfide and ammonia were ca. 80% and ca. 50%, respectively. On the other hand, in this study, the removal efficiencies of hydrogen sulfide and ammonia were ca. 90% and ca. 60%, respectively. Therefore, the removal efficiencies of hydrogen sulfide and ammonia were enhanced by ca. 13% and 20%, respectively, compared to the semipilot biofilter inoculated with Thiobacillus sp. IW and return-sludge. In addition, in this study, the maximum elimination capacities of hydrogen sulfide and ammonia were enhanced by ca. 15% ($8g/m^3/h$) and 10~17% ($3{\sim}5g/m^3/h$), respectively. In this study, it was observed either that in case of even a same inlet load of hydrogen sulfide, a higher concentration of hydrogen sulfide causes more difficulties in treating ammonia containing in waste air than a lower one, or that in case of even a same inlet load of ammonia, a lower concentration of ammonia results in higher removal efficienciy and elimination capacity than a higher one. Even though hydrogen sulfide and ammonia were treated simultaneously by a biofilter in this study, the maximum elimination capacity of hydrogen sulfide in this study exceeded or was similar to that in previous study of biofilter treating only hydrogen sulfide. In addition, this study showed the higher maximum elimination capacity of ammonia than other previous investigation of biofilter treating hydrogen sulfide and ammonia simultaneously.