• Title/Summary/Keyword: Thinning evaluation

Search Result 94, Processing Time 0.025 seconds

Rheological Properties of Antiphlamine-S® Lotion (안티푸라민-에스® 로션의 레올로지 특성 연구)

  • Kuk, Hoa-Youn;Song, Ki-Won
    • Journal of Pharmaceutical Investigation
    • /
    • v.39 no.3
    • /
    • pp.185-199
    • /
    • 2009
  • Using a strain-controlled rheometer [Advanced Rheometric Expansion System (ARES)], the steady shear flow properties and the dynamic viscoelastic properties of $Antiphlamine-S^{(R)}$ lotion have been measured at $20^{\circ}C$ (storage temperature) and $37^{\circ}C$ (body temperature). In this article, the temperature dependence of the linear viscoelastic behavior was firstly reported from the experimental data obtained from a temperature-sweep test. The steady shear flow behavior was secondly reported and then the effect of shear rate on this behavior was discussed in detail. In addition, several inelastic-viscoplastic flow models including a yield stress parameter were employed to make a quantitative evaluation of the steady shear flow behavior, and then the applicability of these models was examined by calculating the various material parameters. The angular frequency dependence of the linear viscoelastic behavior was nextly explained and quantitatively predicted using a fractional derivative model. Finally, the strain amplitude dependence of the dynamic viscoelastic behavior was discussed in full to elucidate a nonlinear rheological behavior in large amplitude oscillatory shear flow fields. Main findings obtained from this study can be summarized as follows : (1) The linear viscoelastic behavior is almostly independent of temperature over a temperature range of $15{\sim}40^{circ}C$. (2) The steady shear viscosity is sharply decreased as an increase in shear rate, demonstrating a pronounced Non-Newtonian shear-thinning flow behavior. (3) The shear stress tends to approach a limiting constant value as a decrease in shear rate, exhibiting an existence of a yield stress. (4) The Herschel-Bulkley, Mizrahi-Berk and Heinz-Casson models are all applicable and have an equivalent validity to quantitatively describe the steady shear flow behavior of $Antiphlamine-S^{(R)}$ lotion whereas both the Bingham and Casson models do not give a good applicability. (5) In small amplitude oscillatory shear flow fields, the storage modulus is always greater than the loss modulus over an entire range of angular frequencies tested and both moduli show a slight dependence on angular frequency. This means that the linear viscoelastic behavior of $Antiphlamine-S^{(R)}$ lotion is dominated by an elastic nature rather than a viscous feature and that a gel-like structure is present in this system. (6) In large amplitude oscillatory shear flow fields, the storage modulus shows a nonlinear strain-thinning behavior at strain amplitude range larger than 10 % while the loss modulus exhibits a weak strain-overshoot behavior up to a strain amplitude of 50 % beyond which followed by a decrease in loss modulus with an increase in strain amplitude. (7) At sufficiently large strain amplitude range (${\gamma}_0$>100 %), the loss modulus is found to be greater than the storage modulus, indicating that a viscous property becomes superior to an elastic character in large shear deformations.

Cone-beam computed tomographic evaluation of mandibular incisor alveolar bone changes for the intrusion arch technique: A retrospective cohort research

  • Lin Lu;Jiaping Si;Zhikang Wang;Xiaoyan Chen
    • The korean journal of orthodontics
    • /
    • v.54 no.2
    • /
    • pp.79-88
    • /
    • 2024
  • Objective: Alveolar bone loss is a common adverse effect of intrusion treatment. Mandibular incisors are prone to dehiscence and fenestrations as they suffer from thinner alveolar bone thickness. Methods: Thirty skeletal class II patients treated with mandibular intrusion arch therapy were included in this study. Lateral cephalograms and cone-beam computed tomography images were taken before treatment (T1) and immediately after intrusion arch removal (T2) to evaluate the tooth displacement and the alveolar bone changes. Pearson's and Spearman's correlation was used to identify risk factors of alveolar bone loss during the intrusion treatment. Results: Deep overbite was successfully corrected (P < 0.05), accompanied by mandibular incisor proclination (P < 0.05). There were no statistically significant change in the true incisor intrusion (P > 0.05). The labial and lingual vertical alveolar bone levels showed a significant decrease (P < 0.05). The alveolar bone is thinning in the labial crestal area and lingual apical area (P < 0.05); accompanied by thickening in the labial apical area (P < 0.05). Proclined incisors, non-extraction treatment, and increased A point-nasion-B point (ANB) degree were positively correlated with alveolar bone loss. Conclusions: While the mandibular intrusion arch effectively corrected the deep overbite, it did cause some unwanted incisor labial tipping/flaring. During the intrusion treatment, the alveolar bone underwent corresponding changes, which was thinning in the labial crestal area and thickening in the labial apical area vice versa. And increased axis change of incisors, non-extraction treatment, and increased ANB were identified as risk factors for alveolar bone loss in patients with mandibular intrusion therapy.

Manufacturing and Feed Value Evaluation of Wood-Based Roughage Using Lumber from Thinning of Oak and Pitch Pine (참나무류와 리기다소나무 간벌재를 이용한 목질 조사료 제조 및 사료가치 평가)

  • Kim, Seok Ju;Lee, Sung-Suk;Baek, Youl Chang;Kim, Yong Sik;Park, Mi-Jin;Ahn, Byeong Jun;Cho, Sung-Taig;Choi, Don-Ha
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.6
    • /
    • pp.851-860
    • /
    • 2015
  • The objective of this study was to manufacture the wood based roughage using lumber from thinning of oak and pitch pine (Pinus rigida). And the study also aimed to investigate a feed value evaluation of wood based roughages. To investigate the optimization condition of steam-digestion treatment for roughage, the wood chips of oak and pitch pine were steam-digestion treated at $160^{\circ}C$ under pressure 6 atm depending on treatment times (60 min, 90 min and 120 min) followed by the content of essential oils analyzed. The essential oil content of steam-digestion treated roughages for 90 min and 120 min were under 0.1 mL/kg. The evaluation of feed value was carried out from steam-digestion treated roughages for 90 min through feed chemical composition analysis, NRC (National research Council) modeling, ruminal degradability analysis and relative economic value analysis. The feed chemical compositions including DM (dry mater), CP (crude protein), EE (ether extract), NDF (neutral detergent fiber), ADF (acid detergent fiber), ADL (acid detergent lignin), NFC (nonfiber carbohydrate) in oak roughage were 95.4, 1.36, 3.11, 90.05, 83.85, 17.33, 6.50%, respectively, and in pitch pine roughage were 94.37, 1.33, 5.48, 87.89, 86.88, 30.56, 6.32%, respectively. Both roughages showed low level of protein and very high level of NDF. The TDN (total digestible nutrient) levels using NRC (2001) model in oak and pitch pine roughages were 40.55, 31.22%, respectively. The ruminal in situ dry matter degradability was higher in oak roughage (23.84%) than in pitch pine roughage (10.02%). The economic values of oak and pitch pine rough-ages were 235, and 210 \, respectively.

Measurement of Inner Defects and out of Plane Deformation of Pressure Vessel in Piping of Circulation System Using Shearography (전단간섭법을 이용한 배관 순환 시스템에서의 압력용기 내부결함 및 면외변형 측정)

  • Kang, Chan-Geun;Kim, Hyun-Ho;Jung, Hyun-Il;Choi, Tae-Ho;Jung, Hyun-Chul;Kim, Kyeong-Suk
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.5
    • /
    • pp.349-355
    • /
    • 2014
  • Wall thinning defects can occur in the pressure vessels used in a variety of industries. Such defects are related to the flow velocity. Considering the fact that such vessels constitute up to 70 or 80% of the plant structures in a power plant, it is important to measure internal defects as part of a safety evaluation. In this study, optical measurement were applied in a non-destructive evaluation using shearography to ensure the safety and improve the reliability of a power plant through the non-contact, non-destructive evaluation of pressure vessels. In order to verify whether the pressure vessels contained faults, experimental and analytical investigation were conducted to measure any internal defects and out-of-plane deformation from inner temperature changes and pressure changes in the piping of the circulation system. The most important factors in this research were the thickness, width, and length of a defect. An increase in these could confirm an increase in the deformation. Thus, internal defects in a pressure vessel were measured using shearography, which made it possible to ensure the reliability and integrity of the pipe.

Evaluation of Thickness Reduction in Steel Plate by Using SH-EMATs (수평횡파 송수신용 EMAT를 이용한 스틸 박판의 두께 감육 평가)

  • Lee, Jin-Hyuk;Park, Ik-Keun;Kim, Yong-Kwon;Kim, Dae-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.1
    • /
    • pp.47-52
    • /
    • 2011
  • An electromagnetic acoustic transducer(EMAT) is a non-contact transducer which can transmit the ultrasonic guided waves into specimens without couplant. And it can easily generate specific guided waves such as SH(shear horizontal) or Lamb waves by altering the design of coil and magnet. In this study, the SH wave, which is generated by EMAT, has been applied to estimate the thickness-reduction in a steel plate. Especially, the interesting feature of the dispersive behavior in selected wave modes is used to detect the thickness-reduction. Experimental results show that the reduction-level can be quantified by the measurement of the group velocity of the wave which passes though the thinning area.

A Discontinuity feature Enhancement Filter Using DCT fuzziness (DCT블록의 애매성을 이용한 불연속특징 향상 필터)

  • Kim, Tae-Yong
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.8
    • /
    • pp.1069-1079
    • /
    • 2005
  • Though there have been many methods to detect features in spatial domain, in the case of a compressed image it has to be decoded, processed and encoded again. Alternatively, we can manipulate a compressed image directly in the Discrete Cosine Transform (DCT) domain that has been used for compressing videos or images in the standards like MPEG and JPEG. In our previous work we proposed a model-based discontinuity evaluation technique in the DCT domain that had problems in the rotated or non-ideal discontinuities. In this paper, we propose a fuzzy filtering technique that consists of height fuzzification, direction fuzzification, and forty filtering of discontinuities. The enhancement achieved by the fuzzy tittering includes the linking, thinning, and smoothing of discontinuities in the DCT domain. Although the detected discontinuities are rough in a low-resolution image for the size (8${\times}$8 pixels) of the DCT block, experimental results show that this technique is fast and stable to enhance the qualify of discontinuities.

  • PDF

Hydro-forming Process Control and Design Concept of Automotive Rear Sub-frame Components Through Cross Sectional Analysis (단면 분석을 통한 자동차용 리어 서브-프레임 하이드로포밍 부품의 공정 제어 및 설계)

  • Kim, Kee Joo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.9
    • /
    • pp.1-6
    • /
    • 2018
  • Hydro-forming technology has spread dramatically throughout automotive industry over the last 20 years. This technology has many advantages for automotive applications in terms of better structural integrity of the parts, lower cost from fewer parts, material savings, weight reduction, lower springback, improved strength, durability, and design flexibility. In this study, various simulation technologies were developed to investigate the formability of hydro-forming components. Through this technology, to establish the effective forming process for appropriate components design, the bending process, pre-forming process, die closing process, etc. were considered for good forming. This paper proposes the forming amount, section length (corresponding to the hydro-forming press capacity), and minimum curvature (curvature effect evaluation according to the hydro-forming pressure) among the considerations in the design of the hydro-forming part. In addition, a design method is proposed for hydro-forming molding by carrying out cross section analysis of a real sub-frame part for automobiles. The effects of pre-bending, axial feed, hydraulic pressure, press load, and friction among the hydro-forming process parameters were analyzed. Therefore, whether these processes are necessary factors for hydro-forming were examined.

Rheology of Concentrated Xanthan Gum Solutions : Steady Shear Flow Behavior

  • Song Ki-Won;Kim Yong-Seok;Chang Gap-Shik
    • Fibers and Polymers
    • /
    • v.7 no.2
    • /
    • pp.129-138
    • /
    • 2006
  • Using a strain-controlled rheometer, the steady shear flow properties of aqueous xanthan gum solutions of different concentrations were measured over a wide range of shear rates. In this article, both the shear rate and concentration dependencies of steady shear flow behavior are reported from the experimentally obtained data. The viscous behavior is quantitatively discussed using a well-known power law type flow equation with a special emphasis on its importance in industrial processing and actual usage. In addition, several inelastic-viscoplastic flow models including a yield stress parameter are employed to make a quantitative evaluation of the steady shear flow behavior, and then the applicability of these models is also examined in detail. Finally, the elastic nature is explained with a brief comment on its practical significance. Main results obtained from this study can be summarized as follows: (1) Concentrated xanthan gum solutions exhibit a finite magnitude of yield stress. This may come from the fact that a large number of hydrogen bonds in the helix structure result in a stable configuration that can show a resistance to flow. (2) Concentrated xanthan gum solutions show a marked non-Newtonian shear-thinning behavior which is well described by a power law flow equation and may be interpreted in terms of the conformational status of the polymer molecules under the influence of shear flow. This rheological feature enhances sensory qualities in food, pharmaceutical, and cosmetic products and guarantees a high degree of mix ability, pumpability, and pourability during their processing and/or actual use. (3) The Herschel-Bulkley, Mizrahi-Berk, and Heinz-Casson models are all applicable and have equivalent ability to describe the steady shear flow behavior of concentrated xanthan gum solutions, whereas both the Bingham and Casson models do not give a good applicability. (4) Concentrated xanthan gum solutions exhibit a quite important elastic flow behavior which acts as a significant factor for many industrial applications such as food, pharmaceutical, and cosmetic manufacturing processes.

Risk Assessment Technique for Gas Fuel Supply System of Combined Cycle Power Plants (I) : Based on API RBI Procedures (복합화력발전의 가스연료 공급계통에 대한 위험도 평가 기법 연구 (I) : API RBI 절차에 기반한 위험도 평가)

  • Song, Jung Soo;Yu, Jong Min;Han, Seung Youn;Choi, Jeong Woo;Yoon, Kee Bong
    • Journal of Energy Engineering
    • /
    • v.27 no.2
    • /
    • pp.1-13
    • /
    • 2018
  • The proportion of natural gas-fueled power generation is expanding due to the change of domestic energy policy pursuing reduction of dust and increasing clean energy consumption. Natural gas fuels used for the combined-cycle power plants and the district-heating power plants are operated at high temperature and high pressure in the fuel supply system. Accidents due to leakage of the gas such as fire and explosion should be prevented by applying risk management techniques. In this study, risk assessment was performed on the natural gas fuel supply system of a combined power plant based on the API RP 581 RBI code. For the application of the API RBI code, lines and segments of the evaluation target system were identified. Operational data and input information were analyzed for the calculations of probability of failure and consequence of failure. The results of the risk assessment were analyzed over time from the initial installation time. In the code-based evaluation, the gas fuel supply system was mainly affected by thinning, external damage, and mechanical fatigue damage mechanisms. As the operating time passes, the risk is expected to increase due to the external damage caused by the CUI(Corrosion Under Insulation).

Rheological Behavior of Semi-Solid Ointment Base (Vaseline) in Steady Shear Flow Fields (정상전단유동장에서 반고형 연고기제(바셀린)의 레올로지 거동)

  • Song, Ki-Won;Kim, Yoon-Jeong;Lee, Chi-Ho
    • Journal of Pharmaceutical Investigation
    • /
    • v.37 no.3
    • /
    • pp.137-148
    • /
    • 2007
  • Using a strain-controlled rheometer [Rheometrics Dynamic Analyzer (RDA II)], the steady shear flow properties of a semi-solid ointment base (vaseline) have been measured over a wide range of shear rates at temperature range of $25{\sim}60^{\circ}C$. In this article, the steady shear flow properties (shear stress, steady shear viscosity and yield stress) were reported from the experimentally obtained data and the effects of shear rate as well as temperature on these properties were discussed in detail. In addition, several inelastic-viscoplastic flow models including a yield stress parameter were employed to make a quantitative evaluation of the steady shear flow behavior, and then the applicability of these models was examined by calculating the various material parameters (yield stress, consistency index and flow behavior index). Main findings obtained from this study can be summarized as follows : (1) At temperature range lower than $40^{\circ}C$, vaseline is regarded as a viscoplastic material having a finite magnitude of yield stress and its flow behavior beyond a yield stress shows a shear-thinning (or pseudo-plastic) feature, indicating a decrease in steady shear viscosity as an increase in shear rate. At this temperature range, the flow curve of vaseline has two inflection points and the first inflection point occurring at relatively lower shear rate corresponds to a static yield stress. The static yield stress of vaseline is decreased with increasing temperature and takes place at a lower shear rate, due to a progressive breakdown of three dimensional network structure. (2) At temperature range higher than $45^{\circ}C$, vaseline becomes a viscous liquid with no yield stress and its flow character exhibits a Newtonian behavior, demonstrating a constant steady shear viscosity regardless of an increase in shear rate. With increasing temperature, vaseline begins to show a Newtonian behavior at a lower shear rate range, indicating that the microcrystalline structure is completely destroyed due to a synergic effect of high temperature and shear deformation. (3) Over a whole range of temperatures tested, the Herschel-Bulkley, Mizrahi-Berk, and Heinz-Casson models are all applicable and have an almostly equivalent ability to quantitatively describe the steady shear flow behavior of vaseline, whereas the Bingham, Casson,and Vocadlo models do not give a good ability.