• Title/Summary/Keyword: Thinning evaluation

Search Result 94, Processing Time 0.028 seconds

Evaluation of Improvement of Detection Capability of Infrared Thermography Tests for Wall-Thinning Defects in Piping Components by Applying Lock-in Mode (적외선열화상 시험에서 위상잠금모드 적용에 따른 배관 감육결함 검출능력 개선 평가)

  • Kim, Jin Weon;Yun, Kyung Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.9
    • /
    • pp.1175-1182
    • /
    • 2013
  • The lock-in mode infrared thermography (IRT) technique has been developed to improve the detection capability of defects in materials with high thermal conductivity, and it has been shown to provide better detection capability than conventional active IRT. Therefore, to investigate the application of this technique to nuclear piping components, lock-in mode IRT tests were conducted on pipe specimens containing simulated wall-thinning defects. Phase images of the wall-thinning defects were obtained from the tests, and they were compared with thermal images obtained from conventional active IRT tests. It showed that the ability to size the detected wall-thinning defects in piping components was improved by using lock-in mode IRT. The improvement was especially apparent when detecting short and narrow defects and defects with slanted edges. However, the detection capability for shallow wall-thinning defects did not improve much when using lock-in mode IRT.

Failure Pressure Evaluation of Local Wall-Thinned Elbows by Real-scale Burst Tests (실배관 파열실험을 통한 국부감육 곡관 손상압력 평가)

  • Kim, Jin-Weon;Park, Chi-Yong;Lee, Sung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.10
    • /
    • pp.1017-1024
    • /
    • 2007
  • This study performed a series of burst tests at ambient temperature using real-scale elbow specimen containing a local wall-thinning defect at it's intrados or extrados and evaluated failure pressure of locally wall-thinned elbows. In the experiment, a 90-degree 100A, Sch. 80 standard elbow was employed, and various wall-thinning geometries, such as length, depth, and circumferential angle, were considered. From the results of experiment, the dependences of failure pressure of wall-thinned elbows on the defect geometries and locations were investigated. In addition, the reliability of existing models was examined by comparing the tests data with the results predicted from existing failure pressure evaluation models for locally wall-thinned elbow.

Evaluation of Formability on Hydroformed Part for Automobile Based on Finite Element Analysis (유한요소해석에 의한 자동차용 관재액압성형 부품의 성형성 평가)

  • Song, Woo-Jin;Heo, Seong-Chan;Ku, Tae-Wan;Kim, Jeong;Kang, Beom-Soo
    • Transactions of Materials Processing
    • /
    • v.17 no.1
    • /
    • pp.52-58
    • /
    • 2008
  • Tube hydroforming process is generally consisted with pre-bending, preforming and hydroforming processes. Among forming defects which may occur in tube hydroforming such as buckling, wrinkling and bursting, the wrinkling and bursting by local instability under excessive tensile stress mode were mainly caused by thinning phenomenon in the manufacturing process. Thus the accurate prediction and suitable evaluation of the thinning phenomenon play an important role in designing and producing the successfully hydroformed parts without any failures. In this work, the formability on hydroformed part for automobile, i.e. engine cradle, was evaluated using finite element analysis. The initial tube radius, loading path with axial feeding force and internal pressure, and preformed configuration after preforming process were considered as the dominant process parameters in total tube hydroforming process. The effects on these process parameters could be confirmed through the numerical experiments with respect to several kinds of finite element simulation conditions. The degree of enhancement on formability with each process parameters such as initial tube radius, loading path and preform configuration were also compared. Therefore, it is noted that the evaluation approach of the formability on hydroformed parts for lots of industrial fields proposed in this study will provide one of feasible methods to satisfy the increasing practical demands for the improvement of the formability in tube hydroforming processes.

Development of Wall Thinning Distinction Method using the Multi-inspecting UT Data of Carbon Steel Piping (탄소강배관 다중 UT 측정두께를 활용한 감육여부 판별법 개발)

  • Hwang, Kyeong Mo;Yun, Hun;Lee, Chan Kyoo
    • Corrosion Science and Technology
    • /
    • v.11 no.5
    • /
    • pp.173-178
    • /
    • 2012
  • To manage the wall thinning of carbon steel piping in nuclear power plants, the utility of Korea has performed thickness inspection for some quantity of pipe components during refueling outages and determined whether repair or replacement after evaluating UT (Ultrasonic Test) data. When the existing UT data evaluation methods, such as Band, Blanket, PTP (Point to Point) Methods, are applied to a certain pipe component, unnecessary re-inspecting situations may be generated even though the component does not thinned. In those cases, economical loss caused by repeated inspection and problems of maintaining the pipe integrity followed by decreasing of newly inspected components may be generated. EPRI (Electric Power Research Institute) in USA has suggested several statistical methods, TPM (Total Point Method), LSS (Least Square Slope) Method, etc. to distinguish whether multiple inspecting components have thinned or not. This paper presents the analysis results for multiple inspecting components over three times based on both NAM (Near Area of Minimum) Method developed by KEPCO-E&C and the other methods suggested by EPRI.

Evaluation of Thickness Reduction in an Aluminum Sheet using SH-EMAT (SH-EMAT를 이용한 알루미늄 박판의 두께감육 평가)

  • Kim, Yong-Kwon;Park, Ik-Kuen
    • Journal of Welding and Joining
    • /
    • v.28 no.2
    • /
    • pp.74-78
    • /
    • 2010
  • In this paper, a non-contact method of evaluating the thickness reduction in an aluminum sheet caused by corrosion and friction using SH-EMAT (shear horizontal, electromagnetic acoustic transducer) is described. Since this method is based on the measurement of the time-of-flight and amplitude change of guided waves caused from the thickness reduction, it provides information on the thinning defects. Information was obtained on the changes of the various wave features, such as their time-of-flight and amplitude, and their correlations with the thickness reduction were investigated. The interesting features in the dispersive behavior of selected guided modes were used for the detection of thinning defects. The measurements of these features using SH waves were performed on aluminum specimens with regions thinned by 7.2% to 29.5% of the total thickness. It is shown that the time-of-flight measurement provides an estimation of the thickness reduction and length of the thinning defects.

Evaluation of Deformation and Strength of Wall Thinne Pipes by Finite Element Analysis (감육배관의 유한요소해석에 의한 변형 및 강도 평가)

  • NAM KI-WOO;AHN SEOK-HWAN;LEE SOO-SIG;KIM JIN-WOOK;YOON JA-MUN
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.5 s.66
    • /
    • pp.65-70
    • /
    • 2005
  • Fracture behavior and pipe strength are very important to the integrity of energy plants, ocean structures, and so forth. The pipes of energy plants and ocean structures are subject to local wall thinning, resulting from severe erosion-corrosion damage. Recently, the effects of local wall thinning on fracture strength and fracture behavior of piping systems have been the focus of many studies. In this paper, the elasto-plastic analysis is performed by FE code ANSYS on straight pipes with wall thinning. We evaluated the failure mode, fracture strength and fracture behavior, using FE analysis. Also, the effect of the axial strain on deformations and failure modes was estimated by FE analysis.

Evaluation of Liquid Droplet Impingement Erosion through Prediction Model and Experiment (예측모델 및 실험을 통한 액적충돌침식 손상 평가)

  • Yun, Hun;Hwang, Kyeong-Mo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.10
    • /
    • pp.1105-1110
    • /
    • 2011
  • Flow-accelerated corrosion (FAC) is a well-known phenomenon that may occur in piping and components. Most nuclear power plants have carbon-steel-pipe wall-thinning management programs in place to control FAC. However, various other erosion mechanisms may also occur in carbon-steel piping. The most common forms of erosion encountered (cavitation, flashing, Liquid Droplet Impingement Erosion (LDIE), and Solid Particle Erosion (SPE)), have caused wall thinning, leaks, and ruptures, and have resulted in unplanned shutdowns in utilities. In particular, the damage caused by LDIE is difficult to predict, and there has been no effort to protect piping from erosive damage. This paper presents an evaluation method for LDIE. It also includes the calculation results from prediction models, a review of the experimental results, and a comparison between the UT data in the damaged components and the results of the calculations and experiments.

Steady Shear Flow Properties of Aqueous Poly(Ethylene Oxide) Solutions (폴리에틸렌옥사이드 수용액의 정상유동 특성)

  • Song, Ki-Won;Kim, Tae-Hoon;Chang, Gap-Shik;An, Seung-Kook;Lee, Jang-Oo;Lee, Chi-Ho
    • Journal of Pharmaceutical Investigation
    • /
    • v.29 no.3
    • /
    • pp.193-203
    • /
    • 1999
  • In order to investigate systematically the steady shear flow properties of aqueous po1y(ethylene oxide) (PEO) solutions having various molecular weights and concentrations, the steady flow viscosity has been measured with a Rheometrics Fluids Spectrometer (RFS II) over a wide range of shear rates. The effects of shear rate, concentration, and molecular weight on the steady shear flow properties were reported in detail from the experimentally measured data, and then the results were interpreted using the concept of a material characteristic time. In addition, some flow models describing the non-Newtonian behavior (shear-thinning characteristics) of polymeric liquids were employed to make a quantitative evaluation of the steady flow behavior, and the applicability of these models was examined by calculating the various material parameters. Main results obtained from this study can be summarized as follows: (1) At low shear rates, aqueous PEO solutions show a Newtonian viscous behavior which is independent of shear rate. At shear rate region higher than a critical shear rate, however, they exhibit a shear-thinning behavior, demonstrating a decrease in steady flow viscosity with increasing shear rate. (2) As an increase in concentration and/or molecular weight, the zero-shear viscosity is increased while the Newtonian viscous region becomes narrower. Moreover, the critical shear rate at which the transition from the Newtonian to shear-thinning behavior occurs is decreased, and the shear-thinning nature becomes more remarkable. (3) Aqueous PEO solutions show a Newtonian viscous behavior at shear rate range lower than the inverse value of a characteristic time $1/{\lambda}_E$, while they exhibit a shear-thinning behavior at shear rate range higher than $1/{\lambda}_E$. For aqueous PEO solutions having a broad molecular weight distribution, the inverse value of a characteristic time is not quantitatively equivalent to the critical shear rate, but the power-law relationship holds between the two quantities. (4) The Cross, Carreau, and Carreau-Yasuda models are all applicable to describe the steady flow behavior of aqueous PEO solutions. Among these models, the Carreau-Yasuda model has the best validity.

  • PDF