• Title/Summary/Keyword: Thinking for SW Education

Search Result 174, Processing Time 0.022 seconds

Development of Digital and AI Teaching-learning Strategies Based on Computational Thinking for Enhancing Digital Literacy and AI Literacy of Elementary School Student (초등학생의 디지털·AI 리터러시 함양을 위한 컴퓨팅 사고력 기반 교수·학습 전략 개발)

  • Ji-Yeon Hong;Yungsik Kim
    • Journal of The Korean Association of Information Education
    • /
    • v.26 no.5
    • /
    • pp.341-352
    • /
    • 2022
  • The wave of a knowledge and information society led by AI, Big Data, and so on is having an all-round impact on our way of life. Therefore the Ministry of Education is in a hurry to strengthen Digital Literacy, including AI and SW Education, by improving the curriculum that can cultivate basic knowledge and capabilities to respond to changes in the future society. It can be seen that establishing a foundation for cultivating Digital Literacy through all subjects and improving basic and in-depth learning in new technology fields such as AI linked to the information curriculum is an essential part for future society. However, research on each content for cultivating Digital and AI literacy is relatively active, while research on teaching and learning strategies is insufficient. Therefore in this study, a CT-based Digital and AI teaching and learning strategy that can foster that was developed and Delphi expert verification was conducted, and the final teaching and learning strategy was completed after evaluating instructor usability and analyzing learner effectiveness.

Simultaneous Diagnostic Assay of Catechol and Caffeine Using an in vivo Implanted Neuro Sensor

  • Ly, Suw-Young;Lee, Chang-Hyun;Jung, Young-Sam;Kwon, O-Min;Lee, Ji-Eun;Baek, Seung-Min;Kwak, Kyu-Ju
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.9
    • /
    • pp.1742-1746
    • /
    • 2008
  • Catechol and caffeine were simultaneously analyzed with a bismuth-immobilized carbon nanotube paste electrode (BPE) using square wave (SW) stripping voltammetry. Optimum analytical conditions were determined. Simultaneous working ranges of 100-1,500 $mgL^{-1}$ for caffeine and 5-75 $mgL^{-1}$ for catechol were obtained. In the separated cell systems, a working range of 0.1-2.1 $mgL^{-1}$ catechol with a correlation coefficient of 0.9935, and a working range of 10-210 $mgL^{-1}$ caffeine with a correlation coefficient of 0.9921 were obtained. A detection limit (S/N) of 0.15 $mgL^{-1}$ (7.7 ${\times}$ $10^{-7}$ M) and a detection limit of 0.02 $mgL^{-1}$ (1.82 ${\times}$ $10^{-7}$ M), respectively, manifested for catechol and caffeine. It was found that three macro-type electrode systems could be implanted in fish and rat neuro cells. For both ions, the ion currents were observed. The physiological impulse conditions and the neuronal thinking current were also obtained.

The Effects of Middle School Mathematical Statistics Area and Python Programming STEAM Instruction on Problem Solving Ability and Curriculum Interest (중학교 수학 통계 영역과 파이썬(Python) 프로그래밍 융합수업이 문제해결력과 교과 흥미도에 미치는 영향)

  • Lee, Do-Young;Chung, Jong-In
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.336-344
    • /
    • 2019
  • The Ministry of Education (2015) announced the "2015 Revised Curriculum for Elementary and Secondary Schools" and announced that SW (Software) training for elementary and junior high school students to develop Computational Thinking will be gradually introduced from 2018. In addition, 'problem solving' and 'programming' have become important areas. Furthermore, the ability to analyze and utilize big data is becoming more emphasized. We developed and applied the statistical - Python programming convergence curriculum based on the idea that convergence education combining information and mathematics, programming and statistical literacy is needed according to current trends. Before and after the experiment, problem solving ability test and programming / mathematical interest test were conducted and compared with the corresponding sample t-test. According to the analysis results, there were significant differences in the pre- and post-test on problem solving ability, programming interest and mathematical interest at the significance level of 0.05.

The Effect of STEAM Program using Arduino on Preservice Science Teachers' STEAM Core Competencies (아두이노를 활용한 STEAM 프로그램이 예비 과학교사의 융합인재 핵심역량에 미치는 영향)

  • Kim, Sun Young;Hyun, Yun Se
    • Journal of Science Education
    • /
    • v.44 no.2
    • /
    • pp.183-196
    • /
    • 2020
  • This study explores the effects of STEAM program using Arduino on preservice science teachers toward their STEAM core competencies. The STEAM program using Arduino consists of four stages: presentation of situation, creative design, emotional touch, and evaluation. The preservice science teachers learned the theoretical backgrounds of STEAM and Arduino. Then, they were given the chance to think about an environmental issue, which is fine dust. The preservice teachers designed an air cleaner and a fine dust measuring instrument using Arduino. The preservice science teachers also produced the air cleaner and the measuring instrument using Arduino. They measured the level of fine dust in the classroom before and after the use of the air cleaner. That is, the preservice teachers experienced each stage of STEAM: seriousness of fine dust, design and production of the measuring instrument of fine dust and air cleaner, and evaluation of the effectiveness of air cleaner. Further, they reflected on their experiences of STEAM program using Arduino. The results indicate that these preservice science teachers statistically improved communication competency, problem-solving competency, gathering information competency, logical analytical thinking competency, and creativity competency. However, there were no statistical improvements on teamwork competency and self-development competency. This study suggests that experiencing STEAM program using Arduino is valuable for the preservice science teachers to develop STEAM core competencies and further implement STEAM program their science classes in the future.